IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1103.1501.html
   My bibliography  Save this paper

Exponential wealth distribution: a new approach from functional iteration theory

Author

Listed:
  • Ricardo Lopez-Ruiz
  • Jose-Luis Lopez
  • Xavier Calbet

Abstract

Exponential distribution is ubiquitous in the framework of multi-agent systems. Usually, it appears as an equilibrium state in the asymptotic time evolution of statistical systems. It has been explained from very different perspectives. In statistical physics, it is obtained from the principle of maximum entropy. In the same context, it can also be derived without any consideration about information theory, only from geometrical arguments under the hypothesis of equiprobability in phase space. Also, several multi-agent economic models based on mappings, with random, deterministic or chaotic interactions, can give rise to the asymptotic appearance of the exponential wealth distribution. An alternative approach to this problem in the framework of iterations in the space of distributions has been recently presented. Concretely, the new iteration given by $ f_{n+1}(x) = \int\int_{u+v>x}{f_n(u)f_n(v)\over u+v} dudv.$. It is found that the exponential distribution is a stable fixed point of the former functional iteration equation. From this point of view, it is easily understood why the exponential wealth distribution (or by extension, other kind of distributions) is asymptotically obtained in different multi-agent economic models.

Suggested Citation

  • Ricardo Lopez-Ruiz & Jose-Luis Lopez & Xavier Calbet, 2011. "Exponential wealth distribution: a new approach from functional iteration theory," Papers 1103.1501, arXiv.org.
  • Handle: RePEc:arx:papers:1103.1501
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1103.1501
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Gonzalez-Estevez & M. G. Cosenza & R. Lopez-Ruiz & J. R. Sanchez, 2008. "Pareto and Boltzmann-Gibbs behaviors in a deterministic multi-agent system," Papers 0801.0969, arXiv.org.
    2. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    3. Ricardo Lopez-Ruiz, 2010. "Exponential wealth distribution in different discrete economic models," Papers 1009.3550, arXiv.org.
    4. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    5. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Lopez-Ruiz & E. Shivanian & S. Abbasbandy & J. L. Lopez, 2011. "A Generalized Continuous Model for Random Markets," Papers 1104.2187, arXiv.org, revised May 2011.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    2. Ellis Scharfenaker, 2022. "Statistical Equilibrium Methods In Analytical Political Economy," Journal of Economic Surveys, Wiley Blackwell, vol. 36(2), pages 276-309, April.
    3. Smerlak, Matteo, 2016. "Thermodynamics of inequalities: From precariousness to economic stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 40-50.
    4. Mimkes, Jürgen, 2010. "Stokes integral of economic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1665-1676.
    5. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    6. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    7. Matteo Smerlak, 2014. "Thermodynamics of inequalities: from precariousness to economic stratification," Papers 1406.6441, arXiv.org, revised Nov 2014.
    8. Markus P. A. Schneider, 2018. "Revisiting the thermal and superthermal two-class distribution of incomes: A critical perspective," Papers 1804.06341, arXiv.org.
    9. Bagatella-Flores, N. & Rodríguez-Achach, M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2015. "Wealth distribution of simple exchange models coupled with extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 168-175.
    10. Nikolaos Papanikolaou, 2020. "The Econophysics of Labor Income," Bulletin of Applied Economics, Risk Market Journals, vol. 7(1), pages 107-122.
    11. Newby, Michael & Behr, Adam & Feizabadi, Mitra Shojania, 2011. "Investigating the distribution of personal income obtained from the recent U.S. data," Economic Modelling, Elsevier, vol. 28(3), pages 1170-1173, May.
    12. Jangho Yang, 2018. "Information Theoretic Approaches In Economics," Journal of Economic Surveys, Wiley Blackwell, vol. 32(3), pages 940-960, July.
    13. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    14. J. R. Iglesias & R. M. C. de Almeida, 2011. "Entropy and equilibrium state of free market models," Papers 1108.5725, arXiv.org.
    15. Oancea, Bogdan & Andrei, Tudorel & Pirjol, Dan, 2017. "Income inequality in Romania: The exponential-Pareto distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 486-498.
    16. Garanina, O.S. & Romanovsky, M.Yu., 2015. "New multi-parametric analytical approximations of exponential distribution with power law tails for new cars sells and other applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 1-9.
    17. R. Lopez-Ruiz & E. Shivanian & S. Abbasbandy & J. L. Lopez, 2011. "A Generalized Continuous Model for Random Markets," Papers 1104.2187, arXiv.org, revised May 2011.
    18. Scott Lawrence & Qin Liu & Victor M. Yakovenko, 2013. "Global inequality in energy consumption from 1980 to 2010," Papers 1312.6443, arXiv.org, revised Mar 2014.
    19. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    20. repec:voc:wpaper:tech82012 is not listed on IDEAS
    21. Ricardo Lopez-Ruiz & Elyas Shivanian & Jose-Luis Lopez, 2013. "Random Market Models with an H-Theorem," Papers 1307.2169, arXiv.org, revised Jul 2014.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1103.1501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.