IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1011.3834.html
   My bibliography  Save this paper

Ising-like agent-based technology diffusion model: adoption patterns vs. seeding strategies

Author

Listed:
  • Carlos E. Laciana
  • Santiago L. Rovere

Abstract

The well-known Ising model used in statistical physics was adapted to a social dynamics context to simulate the adoption of a technological innovation. The model explicitly combines (a) an individual's perception of the advantages of an innovation and (b) social influence from members of the decision-maker's social network. The micro-level adoption dynamics are embedded into an agent-based model that allows exploration of macro-level patterns of technology diffusion throughout systems with different configurations (number and distributions of early adopters, social network topologies). In the present work we carry out many numerical simulations. We find that when the gap between the individual's perception of the options is high, the adoption speed increases if the dispersion of early adopters grows. Another test was based on changing the network topology by means of stochastic connections to a common opinion reference (hub), which resulted in an increment in the adoption speed. Finally, we performed a simulation of competition between options for both regular and small world networks.

Suggested Citation

  • Carlos E. Laciana & Santiago L. Rovere, 2010. "Ising-like agent-based technology diffusion model: adoption patterns vs. seeding strategies," Papers 1011.3834, arXiv.org, revised Jan 2013.
  • Handle: RePEc:arx:papers:1011.3834
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1011.3834
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galam, Serge, 1997. "Rational group decision making: A random field Ising model at T = 0," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 66-80.
    2. Grabowski, Andrzej, 2009. "Opinion formation in a social network: The role of human activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 961-966.
    3. Vega-Redondo,Fernando, 2007. "Complex Social Networks," Cambridge Books, Cambridge University Press, number 9780521857406, September.
    4. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    5. Vega-Redondo,Fernando, 2007. "Complex Social Networks," Cambridge Books, Cambridge University Press, number 9780521674096, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laciana, Carlos E. & Rovere, Santiago L., 2011. "Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1139-1149.
    2. Nikolas Tsakas, 2014. "Optimal influence under observational learning," Gecomplexity Discussion Paper Series 4, Action IS1104 "The EU in the new complex geography of economic systems: models, tools and policy evaluation", revised Nov 2014.
    3. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Laciana, Carlos E. & Oteiza-Aguirre, Nicolás, 2014. "An agent based multi-optional model for the diffusion of innovations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 254-265.
    5. H Peyton Young & Itai Arieli & Yakov Babichenko & Ron Peretz, 2019. "The Speed of Innovation Diffusion in Social Networks," Economics Series Working Papers 884, University of Oxford, Department of Economics.
    6. Marcel Fafchamps & Måns Söderbom & Monique van den Boogart, 2022. "Adoption with Social Learning and Network Externalities," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1259-1282, December.
    7. Ruiz Palazuelos, Sofía, 2021. "Network Perception in Network Games," MPRA Paper 115212, University Library of Munich, Germany, revised 21 Jun 0022.
    8. Opolot, Daniel, 2012. "Social interactions and complex networks," MERIT Working Papers 2012-014, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    9. Itai Arieli & Yakov Babichenko & Ron Peretz & H. Peyton Young, 2019. "The Speed of Innovation Diffusion in Social Networks," Economics Papers 2019-W07, Economics Group, Nuffield College, University of Oxford.
    10. H. Peyton Young, 2009. "Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence, and Social Learning," American Economic Review, American Economic Association, vol. 99(5), pages 1899-1924, December.
    11. De Masi, G. & Giovannetti, G. & Ricchiuti, G., 2013. "Network analysis to detect common strategies in Italian foreign direct investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1202-1214.
    12. Andrea Galeotti & Brian W. Rogers, 2013. "Strategic Immunization and Group Structure," American Economic Journal: Microeconomics, American Economic Association, vol. 5(2), pages 1-32, May.
    13. Mira Frick & Ryota Iijima & Yuhta Ishii, 2018. "Dispersed Behavior and Perceptions in Assortative Societies," Cowles Foundation Discussion Papers 2128R2, Cowles Foundation for Research in Economics, Yale University, revised Oct 2021.
    14. Bargigli, Leonardo & Gallegati, Mauro, 2011. "Random digraphs with given expected degree sequences: A model for economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 78(3), pages 396-411, May.
    15. Konno, Tomohiko, 2013. "An imperfect competition on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5453-5460.
    16. Huremović, Kenan & Ozkes, Ali I., 2022. "Polarization in networks: Identification–alienation framework," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    17. Olaizola, By Norma & Valenciano, Federico, 2021. "Efficiency and stability in the connections model with heterogeneous nodes," Journal of Economic Behavior & Organization, Elsevier, vol. 189(C), pages 490-503.
    18. Olaizola, Norma & Valenciano, Federico, 2020. "A connections model with decreasing returns link-formation technology," MPRA Paper 107585, University Library of Munich, Germany.
    19. Chakrabarti, Anindya S., 2016. "Stochastic Lotka–Volterra equations: A model of lagged diffusion of technology in an interconnected world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 214-223.
    20. Arcaute, E. & Dyagilev, K. & Johari, R. & Mannor, S., 2013. "Dynamics in tree formation games," Games and Economic Behavior, Elsevier, vol. 79(C), pages 1-29.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1011.3834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.