IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1011.2385.html
   My bibliography  Save this paper

The foreign exchange market: return distributions, multifractality, anomalous multifractality and Epps effect

Author

Listed:
  • Stanislaw Drozdz
  • Jaroslaw Kwapien
  • Pawel Oswiecimka
  • Rafal Rak

Abstract

We present a systematic study of various statistical characteristics of high-frequency returns from the foreign exchange market. This study is based on six exchange rates forming two triangles: EUR-GBP-USD and GBP-CHF-JPY. It is shown that the exchange rate return fluctuations for all the pairs considered are well described by the nonextensive statistics in terms of q-Gaussians. There exist some small quantitative variations in the nonextensivity q-parameter values for different exchange rates and this can be related to the importance of a given exchange rate in the world's currency trade. Temporal correlations organize the series of returns such that they develop the multifractal characteristics for all the exchange rates with a varying degree of symmetry of the singularity spectrum f(alpha) however. The most symmetric spectrum is identified for the GBP/USD. We also form time series of triangular residual returns and find that the distributions of their fluctuations develop disproportionately heavier tails as compared to small fluctuations which excludes description in terms of q-Gaussians. The multifractal characteristics for these residual returns reveal such anomalous properties like negative singularity exponents and even negative singularity spectra. Such anomalous multifractal measures have so far been considered in the literature in connection with the diffusion limited aggregation and with turbulence. We find that market inefficiency on short time scales leads to the occurrence of the Epps effect on much longer time scales. Although the currency market is much more liquid than the stock markets and it has much larger transaction frequency, the building-up of correlations takes up to several hours - time that does not differ much from what is observed in the stock markets. This may suggest that non-synchronicity of transactions is not the unique source of the observed effect.

Suggested Citation

  • Stanislaw Drozdz & Jaroslaw Kwapien & Pawel Oswiecimka & Rafal Rak, 2010. "The foreign exchange market: return distributions, multifractality, anomalous multifractality and Epps effect," Papers 1011.2385, arXiv.org.
  • Handle: RePEc:arx:papers:1011.2385
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1011.2385
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanis{l}aw Dro.zd.z & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek & Marcin Wk{a}torek, 2019. "Signatures of crypto-currency market decoupling from the Forex," Papers 1906.07834, arXiv.org, revised Jul 2019.
    2. Wang, Fang & Wang, Lin & Chen, Yuming, 2018. "Quantifying the range of cross-correlated fluctuations using a q–L dependent AHXA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 454-464.
    3. Chapeau-Blondeau, François, 2014. "Tsallis entropy for assessing quantum correlation with Bell-type inequalities in EPR experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 204-215.
    4. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2019. "Correlation patterns in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1026-1037.
    5. Robert Gk{e}barowski & Stanis{l}aw Dro.zd.z & Andrzej Z. G'orski & Pawe{l} O'swik{e}cimka, 2014. "Competition of Commodities for the Status of Money in an Agent-based Model," Papers 1412.2124, arXiv.org.
    6. Faheem Aslam & Paulo Ferreira & Haider Ali & Ana Ercília José, 2022. "Application of Multifractal Analysis in Estimating the Reaction of Energy Markets to Geopolitical Acts and Threats," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    7. Stanis{l}aw Dro.zd.z & Rafa{l} Kowalski & Pawe{l} O'swic{e}cimka & Rafa{l} Rak & Robert Gc{e}barowski, 2018. "Dynamical variety of shapes in financial multifractality," Papers 1809.06728, arXiv.org.
    8. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Pawe{l} O'swik{e}cimka & Tomasz Stanisz & Marcin Wk{a}torek, 2020. "Complexity in economic and social systems: cryptocurrency market at around COVID-19," Papers 2009.10030, arXiv.org.
    9. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Pawe{l} O'swic{e}cimka & Marek Stanuszek, 2018. "Multifractal cross-correlations between the World Oil and other Financial Markets in 2012-2017," Papers 1812.08548, arXiv.org, revised Jun 2019.
    10. Provash Mali & Amitabha Mukhopadhyay, 2015. "Multifractal characterization of gold market: a multifractal detrended fluctuation analysis," Papers 1506.08847, arXiv.org.
    11. Jaros{l}aw Kwapie'n & Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z, 2021. "Cryptocurrency Market Consolidation in 2020--2021," Papers 2112.06552, arXiv.org.
    12. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    13. Bhattacharyya, Trambak & Shukla, Shanu & Pandey, Ranu, 2022. "A Tsallis-like effective exponential delay discounting model and its implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    14. Mali, Provash & Mukhopadhyay, Amitabha, 2014. "Multifractal characterization of gold market: A multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 361-372.
    15. Wang, Jian & Huang, Menghao & Zhang, Yudong & Kim, Junseok, 2022. "Modification of multifractal analysis based on multiplicative cascade image," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    17. Zheng, Zhiyong & Lu, Yunfan & Zhang, Junhuan, 2022. "Multiscale complexity fluctuation behaviours of stochastic interacting cryptocurrency price model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    18. Aki-Hiro Sato & Takaki Hayashi & Janusz Hołyst, 2012. "Comprehensive analysis of market conditions in the foreign exchange market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 167-179, October.
    19. Schadner, Wolfgang, 2021. "On the persistence of market sentiment: A multifractal fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    20. Stanisław Drożdż & Ludovico Minati & Paweł Oświȩcimka & Marek Stanuszek & Marcin Wa̧torek, 2019. "Signatures of the Crypto-Currency Market Decoupling from the Forex," Future Internet, MDPI, vol. 11(7), pages 1-18, July.
    21. Gontis, V. & Kononovicius, A., 2018. "The consentaneous model of the financial markets exhibiting spurious nature of long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1075-1083.
    22. Kartono, Agus & Febriyanti, Marina & Wahyudi, Setyanto Tri & Irmansyah,, 2020. "Predicting foreign currency exchange rates using the numerical solution of the incompressible Navier–Stokes equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    23. R. P. Datta, 2023. "Analysis of Indian foreign exchange markets: A Multifractal Detrended Fluctuation Analysis (MFDFA) approach," Papers 2306.16162, arXiv.org.
    24. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    25. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    2. Haider Ali & Faheem Aslam & Paulo Ferreira, 2021. "Modeling Dynamic Multifractal Efficiency of US Electricity Market," Energies, MDPI, vol. 14(19), pages 1-16, September.
    3. Lux, Thomas & Kaizoji, Taisei, 2004. "Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models," Economics Working Papers 2004-05, Christian-Albrechts-University of Kiel, Department of Economics.
    4. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    5. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    6. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    7. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    8. Lux, Thomas, 2003. "The multi-fractal model of asset returns: Its estimation via GMM and its use for volatility forecasting," Economics Working Papers 2003-13, Christian-Albrechts-University of Kiel, Department of Economics.
    9. Wesselhöfft, Niels & Härdle, Wolfgang Karl, 2019. "Estimating low sampling frequency risk measure by high-frequency data," IRTG 1792 Discussion Papers 2019-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    11. Todd Zorick & Mark A Mandelkern, 2013. "Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    12. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    13. Marc-Etienne BRACHET & Erik TAFLIN & Jean Marcel TCHEOU, 1999. "Scaling transformation and probability distributions for financial time series," GE, Growth, Math methods 9901003, University Library of Munich, Germany.
    14. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    15. Rossitsa Yalamova, 2012. "Fractal Measures in Market Microstructure Research," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 137-154, March - J.
    16. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    17. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    18. Scarlat, E.I. & Stan, Cristina & Cristescu, C.P., 2007. "Self-similar characteristics of the currency exchange rate in an economy in transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 188-198.
    19. Stošić, Darko & Stošić, Dusan & Stošić, Tatijana & Stanley, H. Eugene, 2015. "Multifractal analysis of managed and independent float exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 13-18.
    20. Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon, 2001. "Differentiating intraday seasonalities through wavelet multi-scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 543-556.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1011.2385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.