IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1010.4339.html
   My bibliography  Save this paper

Dynamic Coherent Acceptability Indices and their Applications to Finance

Author

Listed:
  • Tomasz R. Bielecki
  • Igor Cialenco
  • Zhao Zhang

Abstract

In this paper we present a theoretical framework for studying coherent acceptability indices in a dynamic setup. We study dynamic coherent acceptability indices and dynamic coherent risk measures, and we establish a duality between them. We derive a representation theorem for dynamic coherent risk measures in terms of so called dynamically consistent sequence of sets of probability measures. Based on these results, we give a specific construction of dynamic coherent acceptability indices. We also provide examples of dynamic coherent acceptability indices, both abstract and also some that generalize selected classical financial measures of portfolio performance.

Suggested Citation

  • Tomasz R. Bielecki & Igor Cialenco & Zhao Zhang, 2010. "Dynamic Coherent Acceptability Indices and their Applications to Finance," Papers 1010.4339, arXiv.org, revised May 2011.
  • Handle: RePEc:arx:papers:1010.4339
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1010.4339
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Frittelli & Giacomo Scandolo, 2006. "Risk Measures And Capital Requirements For Processes," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 589-612, October.
    2. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    3. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    4. Ioannis Karatzas & Jaksa Cvitanic, 1999. "On dynamic measures of risk," Finance and Stochastics, Springer, vol. 3(4), pages 451-482.
    5. William F. Sharpe, 1965. "Mutual Fund Performance," The Journal of Business, University of Chicago Press, vol. 39, pages 119-119.
    6. A. Jobert & L. C. G. Rogers, 2008. "Valuations And Dynamic Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 1-22, January.
    7. Antonio E. Bernardo & Olivier Ledoit, 2000. "Gain, Loss, and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 144-172, February.
    8. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    9. Beatrice Acciaio & Irina Penner, 2010. "Dynamic risk measures," Papers 1002.3794, arXiv.org.
    10. Alexander Cherny & Dilip Madan, 2009. "New Measures for Performance Evaluation," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2371-2406, July.
    11. Berend Roorda & J. M. Schumacher & Jacob Engwerda, 2005. "Coherent Acceptability Measures In Multiperiod Models," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 589-612, October.
    12. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz R. Bielecki & Igor Cialenco & Ismail Iyigunler & Rodrigo Rodriguez, 2013. "Dynamic Conic Finance: Pricing And Hedging In Market Models With Transaction Costs Via Dynamic Coherent Acceptability Indices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-36.
    2. Ernst Eberlein & Dilip Madan & Martijn Pistorius & Wim Schoutens & Marc Yor, 2014. "Two price economies in continuous time," Annals of Finance, Springer, vol. 10(1), pages 71-100, February.
    3. Tomasz R. Bielecki & Igor Cialenco & Ismail Iyigunler & Rodrigo Rodriguez, 2012. "Dynamic Conic Finance: Pricing and Hedging in Market Models with Transaction Costs via Dynamic Coherent Acceptability Indices," Papers 1205.4790, arXiv.org, revised Jun 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    2. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    3. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. repec:hum:wpaper:sfb649dp2005-006 is not listed on IDEAS
    5. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    6. Roorda, Berend & Schumacher, J.M., 2007. "Time consistency conditions for acceptability measures, with an application to Tail Value at Risk," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 209-230, March.
    7. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    8. Beatrice Acciaio & Hans Föllmer & Irina Penner, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," Finance and Stochastics, Springer, vol. 16(4), pages 669-709, October.
    9. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    10. Beatrice Acciaio & Irina Penner, 2010. "Dynamic risk measures," Papers 1002.3794, arXiv.org.
    11. Beatrice Acciaio & Hans Foellmer & Irina Penner, 2010. "Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles," Papers 1002.3627, arXiv.org.
    12. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    13. Yanhong Chen & Zachary Feinstein, 2022. "Set-valued dynamic risk measures for processes and for vectors," Finance and Stochastics, Springer, vol. 26(3), pages 505-533, July.
    14. Righi, Marcelo Brutti, 2024. "Star-shaped acceptability indexes," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 170-181.
    15. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    16. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    17. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    18. Nicole EL KAROUI & Claudia RAVANELLI, 2008. "Cash Sub-additive Risk Measures and Interest Rate Ambiguity," Swiss Finance Institute Research Paper Series 08-09, Swiss Finance Institute.
    19. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    20. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    21. Yanhong Chen & Zachary Feinstein, 2021. "Set-Valued Dynamic Risk Measures for Processes and Vectors," Papers 2103.00905, arXiv.org, revised Nov 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.4339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.