IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1004.5169.html
   My bibliography  Save this paper

Laplace transform analysis of a multiplicative asset transfer model

Author

Listed:
  • Andrey Sokolov
  • Andrew Melatos
  • Tien Kieu

Abstract

We analyze a simple asset transfer model in which the transfer amount is a fixed fraction $f$ of the giver's wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of $f\in(0,1)$. The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.

Suggested Citation

  • Andrey Sokolov & Andrew Melatos & Tien Kieu, 2010. "Laplace transform analysis of a multiplicative asset transfer model," Papers 1004.5169, arXiv.org.
  • Handle: RePEc:arx:papers:1004.5169
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1004.5169
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    2. M. Rusydi & Sardar M. N. Islam, 2007. "Market Models and Applications," Palgrave Macmillan Books, in: Quantitative Exchange Rate Economics in Developing Countries, chapter 4, pages 45-62, Palgrave Macmillan.
    3. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    4. S. Ispolatov & P.L. Krapivsky & S. Redner, 1998. "Wealth distributions in asset exchange models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 267-276, March.
    5. Ali Saif, M. & Gade, Prashant M., 2007. "Emergence of power-law in a market with mixed models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 448-456.
    6. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
    7. M. Patriarca & A. Chakraborti & E. Heinsalu & G. Germano, 2007. "Relaxation in statistical many-agent economy models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 219-224, May.
    8. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
    9. Angle, John, 2006. "The Inequality Process as a wealth maximizing process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 388-414.
    10. Joseph Abate & Ward Whitt, 2006. "A Unified Framework for Numerically Inverting Laplace Transforms," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 408-421, November.
    11. Anirban Chakraborti & Marco Patriarca, 2008. "Gamma-distribution and wealth inequality," Papers 0802.4410, arXiv.org.
    12. Arnab Chatterjee & Bikas K. Chakrabarti & Robin B. Stinchcombe, 2005. "Master equation for a kinetic model of trading market and its analytic solution," Papers cond-mat/0501413, arXiv.org, revised Aug 2005.
    13. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diniz, M. & Mendes, F.M., 2012. "Effects of taxation on money distribution," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 81-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sokolov, Andrey & Melatos, Andrew & Kieu, Tien, 2010. "Laplace transform analysis of a multiplicative asset transfer model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2782-2792.
    2. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    3. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    5. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2009. "Microeconomics of the ideal gas like market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4151-4158.
    6. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    7. Victor M. Yakovenko, 2012. "Applications of statistical mechanics to economics: Entropic origin of the probability distributions of money, income, and energy consumption," Papers 1204.6483, arXiv.org.
    8. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    9. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    10. Jan Lorenz & Fabian Paetzel & Frank Schweitzer, 2013. "Redistribution Spurs Growth by Using a Portfolio Effect on Risky Human Capital," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-13, February.
    11. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    12. Chakrabarti, Anindya S., 2012. "Effects of the turnover rate on the size distribution of firms: An application of the kinetic exchange models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6039-6050.
    13. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Statistical theories of income and wealth distribution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-31.
    14. Anindya S. Chakrabarti, 2011. "Firm dynamics in a closed, conserved economy: A model of size distribution of employment and related statistics," Papers 1112.2168, arXiv.org.
    15. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.
    16. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    17. Anindya S. Chakrabarti, 2011. "An almost linear stochastic map related to the particle system models of social sciences," Papers 1101.3617, arXiv.org, revised Mar 2011.
    18. Anindya S. Chakrabarti, 2013. "Bimodality in the firm size distributions: a kinetic exchange model approach," Papers 1302.3818, arXiv.org, revised May 2013.
    19. Jan Lorenz & Fabian Paetzel & Frank Schweitzer, 2012. "Redistribution spurs growth by using a portfolio effect on human capital," Papers 1210.3716, arXiv.org.
    20. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Inequality reversal: Effects of the savings propensity and correlated returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3572-3579.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.5169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.