IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0909.4765.html
   My bibliography  Save this paper

Linear stochastic volatility models

Author

Listed:
  • Jacek Jakubowski
  • Maciej Wisniewolski

Abstract

In this paper we investigate general linear stochastic volatility models with correlated Brownian noises. In such models the asset price satisfies a linear SDE with coefficient of linearity being the volatility process. This class contains among others Black-Scholes model, a log-normal stochastic volatility model and Heston stochastic volatility model. For a linear stochastic volatility model we derive representations for the probability density function of the arbitrage price of a financial asset and the prices of European call and put options. A closed-form formulae for the density function and the prices of European call and put options are given for log-normal stochastic volatility model. We also obtain present some new results for Heston and extended Heston stochastic volatility models.

Suggested Citation

  • Jacek Jakubowski & Maciej Wisniewolski, 2009. "Linear stochastic volatility models," Papers 0909.4765, arXiv.org, revised May 2013.
  • Handle: RePEc:arx:papers:0909.4765
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0909.4765
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y. Maghsoodi, 2007. "Exact Solution Of A Martingale Stochastic Volatility Option Problem And Its Empirical Evaluation," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 249-265, April.
    2. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    3. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Frido Rolloos & Kenichiro Shiraya, 2024. "A model‐free approximation for barrier options in a general stochastic volatility framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 923-935, June.
    4. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    5. Kolkiewicz, A. W. & Tan, K. S., 2006. "Unit-Linked Life Insurance Contracts with Lapse Rates Dependent on Economic Factors," Annals of Actuarial Science, Cambridge University Press, vol. 1(1), pages 49-78, March.
    6. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    7. René Garcia & Richard Luger & Éric Renault, 2005. "Viewpoint: Option prices, preferences, and state variables," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(1), pages 1-27, February.
    8. Naoto Kunitomo & Yong-Jin Kim, 2001. "Effects of Stochastic Interest Rates and Volatility on Contingent Claims (Revised Version)," CIRJE F-Series CIRJE-F-129, CIRJE, Faculty of Economics, University of Tokyo.
    9. Kaustav Das & Nicolas Langren'e, 2020. "Explicit approximations of option prices via Malliavin calculus in a general stochastic volatility framework," Papers 2006.01542, arXiv.org, revised Jan 2024.
    10. Fornari, Fabio & Mele, Antonio, 2001. "Recovering the probability density function of asset prices using garch as diffusion approximations," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 83-110, March.
    11. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    12. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    13. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
    14. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.
    15. Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
    16. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    17. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    18. Minqiang Li & Fabio Mercurio, 2015. "Analytic Approximation of Finite‐Maturity Timer Option Prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(3), pages 245-273, March.
    19. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    20. Zhenyu Cui & J. Lars Kirkby & Guanghua Lian & Duy Nguyen, 2017. "Integral Representation Of Probability Density Of Stochastic Volatility Models And Timer Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0909.4765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.