IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0908.4028.html
   My bibliography  Save this paper

Continuously monitored barrier options under Markov processes

Author

Listed:
  • Aleksandar Mijatovic
  • Martijn Pistorius

Abstract

In this paper we present an algorithm for pricing barrier options in one-dimensional Markov models. The approach rests on the construction of an approximating continuous-time Markov chain that closely follows the dynamics of the given Markov model. We illustrate the method by implementing it for a range of models, including a local Levy process and a local volatility jump-diffusion. We also provide a convergence proof and error estimates for this algorithm.

Suggested Citation

  • Aleksandar Mijatovic & Martijn Pistorius, 2009. "Continuously monitored barrier options under Markov processes," Papers 0908.4028, arXiv.org, revised Dec 2010.
  • Handle: RePEc:arx:papers:0908.4028
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0908.4028
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jos� Carlos Dias & João Pedro Vidal Nunes & João Pedro Ruas, 2015. "Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1995-2010, December.
    2. Aleksandar Mijatovi'c & Martijn Pistorius, 2009. "Exotic derivatives under stochastic volatility models with jumps," Papers 0912.2595, arXiv.org, revised Oct 2010.
    3. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    4. Dilip B. Madan, 2010. "Conserving Capital by Adjusting Deltas for Gamma in the Presence of Skewness," JRFM, MDPI, vol. 3(1), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0908.4028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.