IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0906.3425.html
   My bibliography  Save this paper

Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions

Author

Listed:
  • Laetitia Andrieu

    (EDF R&D)

  • Michel De Lara

    (CERMICS)

  • Babacar Seck

    (CERMICS)

Abstract

We provide an economic interpretation of the practice consisting in incorporating risk measures as constraints in a classic expected return maximization problem. For what we call the infimum of expectations class of risk measures, we show that if the decision maker (DM) maximizes the expectation of a random return under constraint that the risk measure is bounded above, he then behaves as a ``generalized expected utility maximizer'' in the following sense. The DM exhibits ambiguity with respect to a family of utility functions defined on a larger set of decisions than the original one; he adopts pessimism and performs first a minimization of expected utility over this family, then performs a maximization over a new decisions set. This economic behaviour is called ``Maxmin under risk'' and studied by Maccheroni (2002). This economic interpretation allows us to exhibit a loss aversion factor when the risk measure is the Conditional Value-at-Risk.

Suggested Citation

  • Laetitia Andrieu & Michel De Lara & Babacar Seck, 2009. "Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions," Papers 0906.3425, arXiv.org.
  • Handle: RePEc:arx:papers:0906.3425
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0906.3425
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    2. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    3. Fabio Maccheroni, 2002. "Maxmin under risk," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(4), pages 823-831.
    4. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babacar Seck & Laetitia Andrieu & Michel De Lara, 2012. "Parametric multi-attribute utility functions for optimal profit under risk constraints," Theory and Decision, Springer, vol. 72(2), pages 257-271, February.
    2. Laetitia Andrieu & Michel de Lara & Babacar Seck, 2008. "Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions," Working Papers hal-00390836, HAL.
    3. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    4. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    5. Benjamin Armbruster & Erick Delage, 2015. "Decision Making Under Uncertainty When Preference Information Is Incomplete," Management Science, INFORMS, vol. 61(1), pages 111-128, January.
    6. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    7. Hasanjan Sayit, 2022. "A discussion of stochastic dominance and mean-risk optimal portfolio problems based on mean-variance-mixture models," Papers 2202.02488, arXiv.org, revised Dec 2024.
    8. Andrey Lizyayev, 2010. "Stochastic Dominance Efficiency Analysis of Diversified Portfolios: Classification, Comparison and Refinements," Tinbergen Institute Discussion Papers 10-084/2, Tinbergen Institute.
    9. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2018. "Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests," European Journal of Operational Research, Elsevier, vol. 264(2), pages 675-685.
    10. Amita Sharma & Aparna Mehra, 2017. "Financial analysis based sectoral portfolio optimization under second order stochastic dominance," Annals of Operations Research, Springer, vol. 256(1), pages 171-197, September.
    11. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    12. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    13. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
    14. Branda, Martin, 2015. "Diversification-consistent data envelopment analysis based on directional-distance measures," Omega, Elsevier, vol. 52(C), pages 65-76.
    15. Neslihan Fidan Keçeci & Viktor Kuzmenko & Stan Uryasev, 2016. "Portfolios Dominating Indices: Optimization with Second-Order Stochastic Dominance Constraints vs. Minimum and Mean Variance Portfolios," JRFM, MDPI, vol. 9(4), pages 1-14, October.
    16. Dentcheva Darinka & Stock Gregory J. & Rekeda Ludmyla, 2011. "Mean-risk tests of stochastic dominance," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 97-118, May.
    17. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    18. Tom Erik Sønsteng Henriksen & Alois Pichler & Sjur Westgaard & Stein Frydenberg, 2019. "Can commodities dominate stock and bond portfolios?," Annals of Operations Research, Springer, vol. 282(1), pages 155-177, November.
    19. Darinka Dentcheva & Spiridon Penev & Andrzej Ruszczyński, 2017. "Statistical estimation of composite risk functionals and risk optimization problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 737-760, August.
    20. Neslihan Fidan Keçeci & Yonca Erdem Demirtaş, 2018. "Risk-Based DEA Efficiency and SSD Efficiency of OECD Members Stock Indices," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 6(1), pages 25-36, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0906.3425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.