IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0901.1218.html
   My bibliography  Save this paper

Efficient Pricing of CPPI using Markov Operators

Author

Listed:
  • Louis Paulot
  • Xavier Lacroze

Abstract

Constant Proportion Portfolio Insurance (CPPI) is a strategy designed to give participation in a risky asset while protecting the invested capital. Some gap risk due to extreme events is often kept by the issuer of the product: a put option on the CPPI strategy is included in the product. In this paper we present a new method for the pricing of CPPIs and options on CPPIs, which is much faster and more accurate than the usual Monte-Carlo method. Provided the underlying follows a homogeneous process, the path-dependent CPPI strategy is reformulated into a Markov process in one variable, which allows to use efficient linear algebra techniques. Tail events, which are crucial in the pricing are handled smoothly. We incorporate in this framework linear thresholds, profit lock-in, performance coupons... The American exercise of open-ended CPPIs is handled naturally through backward propagation. Finally we use our pricing scheme to study the influence of various features on the gap risk of CPPI strategies.

Suggested Citation

  • Louis Paulot & Xavier Lacroze, 2009. "Efficient Pricing of CPPI using Markov Operators," Papers 0901.1218, arXiv.org.
  • Handle: RePEc:arx:papers:0901.1218
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0901.1218
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Peter Tankov, 2009. "Constant Proportion Portfolio Insurance In The Presence Of Jumps In Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 379-401, July.
    2. Albanese, Claudio, 2006. "Operator Methods, Abelian Processes And Dynamic Conditioning," MPRA Paper 5246, University Library of Munich, Germany, revised 06 Nov 2007.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. P. Bertrand & J.L. Prigent, 2000. "Portfolio Insurance : The extreme Value of the CCPI Method," THEMA Working Papers 2000-49, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zieling, Daniel & Mahayni, Antje & Balder, Sven, 2014. "Performance evaluation of optimized portfolio insurance strategies," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 212-225.
    2. Louis Paulot & Xavier Lacroze, 2009. "One-Dimensional Pricing of CPPI," Papers 0905.2926, arXiv.org, revised Feb 2010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis Paulot & Xavier Lacroze, 2009. "One-Dimensional Pricing of CPPI," Papers 0905.2926, arXiv.org, revised Feb 2010.
    2. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    3. Sami Attaoui & Vincent Lacoste, 2013. "A scenario-based description of optimal American capital guaranteed strategies," Finance, Presses universitaires de Grenoble, vol. 34(2), pages 65-119.
    4. Ben Ameur, H. & Prigent, J.L., 2014. "Portfolio insurance: Gap risk under conditional multiples," European Journal of Operational Research, Elsevier, vol. 236(1), pages 238-253.
    5. Raquel M. Gaspar, 2016. "On Path–dependency of Constant Proportion Portfolio Insurance strategies," EcoMod2016 9381, EcoMod.
    6. Bertrand, Philippe & Prigent, Jean-luc, 2011. "Omega performance measure and portfolio insurance," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1811-1823, July.
    7. Farid MKAOUAR & Jean-luc PRIGENT, 2014. "Constant Proportion Portfolio Insurance under Tolerance and Transaction Costs," Working Papers 2014-303, Department of Research, Ipag Business School.
    8. Jacques Pézier & Johanna Scheller, 2011. "A Comprehensive Evaluation of Portfolio Insurance Strategies," ICMA Centre Discussion Papers in Finance icma-dp2011-15, Henley Business School, University of Reading.
    9. Xavier Warin, 2016. "The Asset Liability Management problem of a nuclear operator : a numerical stochastic optimization approach," Papers 1611.04877, arXiv.org.
    10. Weng, Chengguo, 2013. "Constant proportion portfolio insurance under a regime switching exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 508-521.
    11. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    12. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    13. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    14. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    15. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    16. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    17. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    18. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    19. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    20. Guo, Fenglong, 2022. "Ruin probability of a continuous-time model with dependence between insurance and financial risks caused by systematic factors," Applied Mathematics and Computation, Elsevier, vol. 413(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0901.1218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.