IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0811.4039.html
   My bibliography  Save this paper

Hedging of Defaultable Contingent Claims using BSDE with uncertain time horizon

Author

Listed:
  • Christophette Blanchet-Scalliet

    (ICJ)

  • Anne Eyraud-Loisel

    (SAF)

  • Manuela Royer-Carenzi

    (LATP)

Abstract

This article focuses on the mathematical problem of existence and uniqueness of BSDE with a random terminal time which is a general random variable but not a stopping time, as it has been usually the case in the previous literature of BSDE with random terminal time. The main motivation of this work is a financial or actuarial problem of hedging of defaultable contingent claims or life insurance contracts, for which the terminal time is a default time or a death time, which are not stopping times. We have to use progressive enlargement of the Brownian filtration, and to solve the obtained BSDE under this enlarged filtration. This work gives a solution to the mathematical problem and proves the existence and uniqueness of solutions of such BSDE under certain general conditions. This approach is applied to the financial problem of hedging of defaultable contingent claims, and an expression of the hedging strategy is given for a defaultable contingent claim or a life insurance contract.

Suggested Citation

  • Christophette Blanchet-Scalliet & Anne Eyraud-Loisel & Manuela Royer-Carenzi, 2008. "Hedging of Defaultable Contingent Claims using BSDE with uncertain time horizon," Papers 0811.4039, arXiv.org, revised Sep 2009.
  • Handle: RePEc:arx:papers:0811.4039
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0811.4039
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    2. Christophette Blanchet-Scalliet & Monique Jeanblanc, 2004. "Hazard rate for credit risk and hedging defaultable contingent claims," Finance and Stochastics, Springer, vol. 8(1), pages 145-159, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Lim & Marie-Claire Quenez, 2008. "Utility maximization in incomplete markets with default," Papers 0811.4715, arXiv.org, revised Jul 2010.
    2. Christophette Blanchet-Scalliet & Anne Eyraud-Loisel & Manuela Royer-Carenzi, 2010. "Hedging of Defaultable Contingent Claims using BSDE with uncertain time horizon," Post-Print hal-00341431, HAL.
    3. Chaofan Sun & Ken Seng Tan & Wei Wei, 2022. "Credit Valuation Adjustment with Replacement Closeout: Theory and Algorithms," Papers 2201.09105, arXiv.org, revised Jan 2022.
    4. Dirk Becherer, 2007. "Bounded solutions to backward SDE's with jumps for utility optimization and indifference hedging," Papers math/0702405, arXiv.org.
    5. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    6. Bouchard Bruno & Tan Xiaolu & Warin Xavier & Zou Yiyi, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    7. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    8. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    9. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    10. Mingyu Xu, 2007. "Reflected Backward SDEs with Two Barriers Under Monotonicity and General Increasing Conditions," Journal of Theoretical Probability, Springer, vol. 20(4), pages 1005-1039, December.
    11. Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.
    12. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.
    13. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    14. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    15. Qi Zeng & Hae Won (Henny) Jung, 2014. "Optimal Contract, Ownership Structure and Asset Pricing," 2014 Meeting Papers 911, Society for Economic Dynamics.
    16. Shaolin Ji & Xiaomin Shi, 2016. "Explicit solutions for continuous time mean-variance portfolio selection with nonlinear wealth equations," Papers 1606.05488, arXiv.org.
    17. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    18. Luis Escauriaza & Daniel C. Schwarz & Hao Xing, 2020. "Radner equilibrium and systems of quadratic BSDEs with discontinuous generators," Papers 2008.03500, arXiv.org, revised May 2021.
    19. N'zi, Modeste & Owo, Jean-Marc, 2009. "Backward doubly stochastic differential equations with discontinuous coefficients," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 920-926, April.
    20. Albrecht, E & Baum, Günter & Birsa, R & Bradamante, F & Bressan, A & Chapiro, A & Cicuttin, A & Ciliberti, P & Colavita, A & Costa, S & Crespo, M & Cristaudo, P & Dalla Torre, S & Diaz, V & Duic, V &, 2010. "Results from COMPASS RICH-1," Center for Mathematical Economics Working Papers 535, Center for Mathematical Economics, Bielefeld University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0811.4039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.