IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0811.3122.html
   My bibliography  Save this paper

A multiscale view on inverse statistics and gain/loss asymmetry in financial time series

Author

Listed:
  • Johannes Vitalis Siven
  • Jeffrey Todd Lins
  • Jonas Lundbek Hansen

Abstract

Researchers have studied the first passage time of financial time series and observed that the smallest time interval needed for a stock index to move a given distance is typically shorter for negative than for positive price movements. The same is not observed for the index constituents, the individual stocks. We use the discrete wavelet transform to illustrate that this is a long rather than short time scale phenomenon -- if enough low frequency content of the price process is removed, the asymmetry disappears. We also propose a new model, which explain the asymmetry by prolonged, correlated down movements of individual stocks.

Suggested Citation

  • Johannes Vitalis Siven & Jeffrey Todd Lins & Jonas Lundbek Hansen, 2008. "A multiscale view on inverse statistics and gain/loss asymmetry in financial time series," Papers 0811.3122, arXiv.org.
  • Handle: RePEc:arx:papers:0811.3122
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0811.3122
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raul Donangelo & Mogens H. Jensen & Ingve Simonsen & Kim Sneppen, 2006. "Synchronization Model for Stock Market Asymmetry," Papers physics/0604137, arXiv.org, revised Aug 2006.
    2. A. Johansen & I. Simonsen & M. H. Jensen, 2005. "Inverse Statistics for Stocks and Markets," Papers physics/0511091, arXiv.org.
    3. Ingve Simonsen & Mogens H. Jensen & Anders Johansen, 2002. "Optimal Investment Horizons," Papers cond-mat/0202352, arXiv.org.
    4. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Vitalis Siven & Jeffrey Todd Lins, 2009. "Temporal structure and gain/loss asymmetry for real and artificial stock indices," Papers 0907.0554, arXiv.org.
    2. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    2. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    3. T. Bisig & A. Dupuis & V. Impagliazzo & R. B. Olsen, 2012. "The scale of market quakes," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 501-508, July.
    4. Johannes Vitalis Siven & Jeffrey Todd Lins, 2009. "Temporal structure and gain/loss asymmetry for real and artificial stock indices," Papers 0907.0554, arXiv.org.
    5. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    6. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    7. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    8. Dash, Saumya Ranjan & Maitra, Debasish, 2018. "Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach," Finance Research Letters, Elsevier, vol. 26(C), pages 32-39.
    9. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    10. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    11. Aviral Tiwari & Niyati Bhanja & Arif Dar & Faridul Islam, 2015. "Time–frequency relationship between share prices and exchange rates in India: Evidence from continuous wavelets," Empirical Economics, Springer, vol. 48(2), pages 699-714, March.
    12. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    13. Zou, Yongjie & Li, Honggang, 2014. "Time spans between price maxima and price minima in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 303-309.
    14. Bence Toth & Janos Kertesz, 2009. "The Epps effect revisited," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 793-802.
    15. Do, Hung Xuan & Brooks, Robert & Treepongkaruna, Sirimon & Wu, Eliza, 2014. "How does trading volume affect financial return distributions?," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 190-206.
    16. W.-S. Jung & F. Z. Wang & S. Havlin & T. Kaizoji & H.-T. Moon & H. E. Stanley, 2008. "Volatility return intervals analysis of the Japanese market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(1), pages 113-119, March.
    17. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    18. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    19. Beine, Michel & Laurent, Sébastien & Palm, Franz C., 2009. "Central bank FOREX interventions assessed using realized moments," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 112-127, February.
    20. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0811.3122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.