IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2018003.html
   My bibliography  Save this paper

Construction of two-level nonregular designs of strength three with large run sizes

Author

Listed:
  • VÁZQUEZ-ALCOCER, Alan
  • XU, Hongquan

Abstract

Two-level orthogonal arrays of strength 3 permit the study of the main effects and the two-factor interactions of the experimental factors. These arrays are classified into regular and nonregular designs. Good regular designs are available in the literature for large run sizes that are a power of 2. In contrast, good nonregular designs, which have run sizes that are multiples of 8 and are more exible alternatives to regular designs, are not available for large numbers of runs because their construction is challenging. The contribution of this paper is a collection of strength-3 nonregular designs with large run sizes that, to the best of our knowledge, have not been explored before in the design literature. Using theoretical results and algorithmic approaches, we generate nonregular designs with up to 1280 runs. Our designs fill the gaps between the available strength-3 designs with large run sizes and outperform comparably-sized regular designs in terms of the aliasing among the two-factor interactions. We show the applicability of the new collection of strength-3 designs using a drug combination experiment.

Suggested Citation

  • VÁZQUEZ-ALCOCER, Alan & XU, Hongquan, 2018. "Construction of two-level nonregular designs of strength three with large run sizes," Working Papers 2018003, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2018003
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/58d119/148360.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grömping, Ulrike, 2014. "R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level Designs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i01).
    2. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    3. SYAFITRI, Utami & SARTONO, Bagus & GOOS, Peter, 2015. "D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints," Working Papers 2015003, University of Antwerp, Faculty of Business and Economics.
    4. Butler, Neil A., 2004. "Minimum G2-aberration properties of two-level foldover designs," Statistics & Probability Letters, Elsevier, vol. 67(2), pages 121-132, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VÁZQUEZ-ALCOCER, Alan & GOOS, Peter & SCHOEN, Eric D., 2016. "Two-level designs constructed by concatenating orthogonal arrays of strenght three," Working Papers 2016011, University of Antwerp, Faculty of Business and Economics.
    2. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    3. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    4. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    5. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    6. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    7. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.
    8. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    9. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    10. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    11. Felipe, Ángel & Ortuño, M. Teresa & Righini, Giovanni & Tirado, Gregorio, 2014. "A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 111-128.
    12. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    13. Fathali, J. & Kakhki, H. Taghizadeh, 2006. "Solving the p-median problem with pos/neg weights by variable neighborhood search and some results for special cases," European Journal of Operational Research, Elsevier, vol. 170(2), pages 440-462, April.
    14. Tengkuo Zhu & Stephen D. Boyles & Avinash Unnikrishnan, 2024. "Battery Electric Vehicle Traveling Salesman Problem with Drone," Networks and Spatial Economics, Springer, vol. 24(1), pages 49-97, March.
    15. Martín Barragán, Belén, 2016. "A Partial parametric path algorithm for multiclass classification," DES - Working Papers. Statistics and Econometrics. WS 22390, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.
    17. Tino Henke & M. Grazia Speranza & Gerhard Wäscher, 2014. "The Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," FEMM Working Papers 140006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    18. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    19. Olcay Polat & Can B. Kalayci & Özcan Mutlu & Surendra M. Gupta, 2016. "A two-phase variable neighbourhood search algorithm for assembly line worker assignment and balancing problem type-II: an industrial case study," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 722-741, February.
    20. Janssens, Jochen & Van den Bergh, Joos & Sörensen, Kenneth & Cattrysse, Dirk, 2015. "Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 222-231.

    More about this item

    Keywords

    Drug combination experiment; Generalized minimum aberration; Orthogonal array; Two-factor interaction; Variable neighborhood search;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2018003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.