IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2014003.html
   My bibliography  Save this paper

Dance hit song prediction

Author

Listed:
  • HERREMANS, Dorien
  • MARTENS, David
  • SÖRENSEN, Kenneth

Abstract

Record companies invest billions of dollars in new talent around the globe each year. Gaining insight into what actually makes a hit song would provide tremendous benefits for the music industry. In this research we tackle this question by focusing on the dance hit song classification problem. A database of dance hit songs from 1985 until 2013 is built, including basic musical features, as well as more advanced features that capture a temporal aspect. A number of different classifiers are used to build and test dance hit prediction models. The resulting best model has a good performance when predicting whether a song is a \top 10" dance hit versus a lower listed position.

Suggested Citation

  • HERREMANS, Dorien & MARTENS, David & SÖRENSEN, Kenneth, 2014. "Dance hit song prediction," Working Papers 2014003, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2014003
    as

    Download full text from publisher

    File URL: https://www.uantwerpen.be/images/uantwerpen/container1244/files/TEW%20-%20Onderzoek/Working%20Papers/RPS/2014/RPS-2014-003.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myounggu Lee & Hye-jin Kim, 2024. "Exploring determinants of digital music success in South Korea," Electronic Commerce Research, Springer, vol. 24(3), pages 1659-1680, September.
    2. Nicola Montecchio & Pierre Roy & François Pachet, 2020. "The skipping behavior of users of music streaming services and its relation to musical structure," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
    3. Choicharoon, Aritad & Hodgett, Richard & Summers, Barbara & Siraj, Sajid, 2024. "Hit or miss: A decision support system framework for signing new musical talent," European Journal of Operational Research, Elsevier, vol. 312(1), pages 324-337.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoffmann, F. & Baesens, B. & Mues, C. & Van Gestel, T. & Vanthienen, J., 2007. "Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 540-555, February.
    2. Nguyen Hoang Thuan & Pedro Antunes & David Johnstone, 2016. "Factors influencing the decision to crowdsource: A systematic literature review," Information Systems Frontiers, Springer, vol. 18(1), pages 47-68, February.
    3. Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
    4. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    5. Kwon, He-Boong & Lee, Jooh, 2019. "Exploring the differential impact of environmental sustainability, operational efficiency, and corporate reputation on market valuation in high-tech-oriented firms," International Journal of Production Economics, Elsevier, vol. 211(C), pages 1-14.
    6. Véronique Van Vlasselaer & Tina Eliassi-Rad & Leman Akoglu & Monique Snoeck & Bart Baesens, 2017. "GOTCHA! Network-Based Fraud Detection for Social Security Fraud," Management Science, INFORMS, vol. 63(9), pages 3090-3110, September.
    7. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    8. Yuanfeng Cai & Zhengrui Jiang & Vijay Mookerjee, 2017. "How to Deal with Liars? Designing Intelligent Rule-Based Expert Systems to Increase Accuracy or Reduce Cost," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 268-286, May.
    9. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    10. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    11. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    12. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    13. Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jun 2023.
    14. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    15. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    16. Xiao Fang & Olivia R. Liu Sheng & Paulo Goes, 2013. "When Is the Right Time to Refresh Knowledge Discovered from Data?," Operations Research, INFORMS, vol. 61(1), pages 32-44, February.
    17. R Setiono & S-L Pan & M-H Hsieh & A Azcarraga, 2006. "Knowledge acquisition and revision using neural networks: an application to a cross-national study of brand image perception," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 231-240, March.
    18. Tawei Wang & Karthik N. Kannan & Jackie Rees Ulmer, 2013. "The Association Between the Disclosure and the Realization of Information Security Risk Factors," Information Systems Research, INFORMS, vol. 24(2), pages 201-218, June.
    19. Brad S. Trinkle & Amelia A. Baldwin, 2007. "Interpretable credit model development via artificial neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 123-147, July.
    20. Marchioni, Andrea & Magni, Carlo Alberto, 2018. "Investment decisions and sensitivity analysis: NPV-consistency of rates of return," European Journal of Operational Research, Elsevier, vol. 268(1), pages 361-372.

    More about this item

    Keywords

    Data mining; Classification; Prediction; Music Information Retrieval (MIR);
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2014003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.