IDEAS home Printed from https://ideas.repec.org/p/ajr/sodwps/2021-09.html
   My bibliography  Save this paper

Creating Powerful and Interpretable Models with Regression Networks

Author

Listed:
  • Lachlan O'Neill

    (Faculty of Information Technology, Monash University)

  • Simon D Angus

    (Dept. of Economics & SoDa Laboratories, Monash Business School, Monash University)

  • Satya Borgohain

    (SoDa Laboratories, Monash Business School, Monash University)

  • Nader Chmait

    (Faculty of Information Technology, Monash University)

  • David Dowe

    (Faculty of Information Technology, Monash University)

Abstract

As the discipline has evolved, research in machine learning has been focused more and more on creating more powerful neural networks, without regard for the interpretability of these networks. Such “black-box models†yield state-of-the-art results, but we cannot understand why they make a particular decision or prediction. Sometimes this is acceptable, but often it is not. We propose a novel architecture, Regression Networks, which combines the power of neural networks with the understandability of regression analysis. While some methods for combining these exist in the literature, our architecture generalizes these approaches by taking interactions into account, offering the power of a dense neural network without forsaking interpretability. We demonstrate that the models exceed the state-of-the-art performance of interpretable models on several benchmark datasets, matching the power of a dense neural network. Finally, we discuss how these techniques can be generalized to other neural architectures, such as convolutional and recurrent neural networks.

Suggested Citation

  • Lachlan O'Neill & Simon D Angus & Satya Borgohain & Nader Chmait & David Dowe, 2021. "Creating Powerful and Interpretable Models with Regression Networks," SoDa Laboratories Working Paper Series 2021-09, Monash University, SoDa Laboratories.
  • Handle: RePEc:ajr:sodwps:2021-09
    as

    Download full text from publisher

    File URL: http://soda-wps.s3-website-ap-southeast-2.amazonaws.com/RePEc/ajr/sodwps/2021-09.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    2. Kelley Pace, R. & Barry, Ronald, 1997. "Sparse spatial autoregressions," Statistics & Probability Letters, Elsevier, vol. 33(3), pages 291-297, May.
    3. Samuele Lo Piano, 2020. "Ethical principles in machine learning and artificial intelligence: cases from the field and possible ways forward," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    2. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palmquist, Raymond B., 2006. "Property Value Models," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 2, chapter 16, pages 763-819, Elsevier.
    2. Lucija Muehlenbachs & Elisheba Spiller & Christopher Timmins, 2015. "The Housing Market Impacts of Shale Gas Development," American Economic Review, American Economic Association, vol. 105(12), pages 3633-3659, December.
    3. Kheradmandi, Ameneh & Rasekh, Abdolrahman, 2015. "Estimation in skew-normal linear mixed measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 1-11.
    4. Xiandeng Jiang & Zheng Pan & Ningru Zhao, 2023. "Relative Value vs Absolute Value: Housing Wealth and Labor Supply," The Journal of Real Estate Finance and Economics, Springer, vol. 66(1), pages 41-76, January.
    5. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    6. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    7. Jianhong Shi & Qian Yang & Xiongya Li & Weixing Song, 2017. "Effects of measurement error on a class of single-index varying coefficient regression models," Computational Statistics, Springer, vol. 32(3), pages 977-1001, September.
    8. Ahlfeldt, Gabriel M. & Nitsch, Volker & Wendland, Nicolai, 2019. "Ease vs. noise: Long-run changes in the value of transport (dis)amenities," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    9. Roy E. Welsch, 1980. "Regression Sensitivity Analysis and Bounded-Influence Estimation," NBER Chapters, in: Evaluation of Econometric Models, pages 153-167, National Bureau of Economic Research, Inc.
    10. Liu, Hongxing & Gopalakrishnan, Sathya & Browning, Drew & Sivandran, Gajan, 2019. "Valuing water quality change using a coupled economic-hydrological model," Ecological Economics, Elsevier, vol. 161(C), pages 32-40.
    11. Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
    12. Zhensheng Huang & Xing Sun & Riquan Zhang, 2022. "Estimation for partially varying-coefficient single-index models with distorted measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 175-201, February.
    13. Alexandre Xavier Ywata Carvalho & Pedro Henrique Melo Albuquerque & Gilberto Rezende de Almeida Junior & Rafael Dantas Guimarães & Camilo Rey Laureto, 2009. "Clusterização Hierárquica Espacial com Atributos Binários," Discussion Papers 1428, Instituto de Pesquisa Econômica Aplicada - IPEA.
    14. Wei Qian & Yuhong Yang, 2013. "Model selection via standard error adjusted adaptive lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 295-318, April.
    15. Daniëls, H.A.M. & Velikova, M.V., 2003. "Derivation of Monotone Decision Models from Non-Monotone Data," Other publications TiSEM d52d436a-1736-409a-b1fc-0, Tilburg University, School of Economics and Management.
    16. Dan SHI & Junjie WANG, 2016. "Methods and Application of Evaluating the Economic Value of the Ecological Environment," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-16, December.
    17. Ida Ferrara & Stephen McComb & Paul Missios, 2007. "Local Willingness-to-Pay Estimates for the Remediation of the Sydney Tar Ponds in Nova Scotia," Canadian Public Policy, University of Toronto Press, vol. 33(4), pages 441-458, December.
    18. Ozdamar, Oznur & Giovanis, Eleftherios, 2014. "Valuing the Effects of Air and Noise Pollution on Health Status in Turkey," MPRA Paper 59992, University Library of Munich, Germany.
    19. Ahlfeldt, Gabriel M. & Nitsch, Volker & Wendland, Nicolai, 2019. "Ease versus noise: long-run changes in the value of transport (dis)amenities," LSE Research Online Documents on Economics 102824, London School of Economics and Political Science, LSE Library.
    20. Villalonga, Belen, 2004. "Intangible resources, Tobin's q, and sustainability of performance differences," Journal of Economic Behavior & Organization, Elsevier, vol. 54(2), pages 205-230, June.

    More about this item

    Keywords

    machine learning; policy evaluation; neural networks; regression; classification;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajr:sodwps:2021-09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ashani Amarasinghe (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.