IDEAS home Printed from https://ideas.repec.org/p/ahg/wpaper/wp2020-5.html
   My bibliography  Save this paper

Un modello statistico per il monitoraggio delle entrate tributarie (MoME)

Author

Listed:
  • Enrico D’Elia

    (Ministry of Economy and Finance of Italy)

  • Francesca Faedda

    (Ministry of Economy and Finance of Italy)

  • Giacomo Giannone

    (Ministry of Economy and Finance of Italy)

Abstract

Le entrate tributarie mensili lorde di competenza, accertate nel bilancio dello Stato, derivanti da IVA, accise sui prodotti petroliferi e ritenute Irpef (che rappresentano circa il 70% del totale delle entrate tributarie lorde) sono state proiettate utilizzando dei modelli bridge e alcuni indicatori statistici particolarmente tempestivi, come l’indice del fatturato, dell’occupazione, delle retribuzioni contrattuali e delle importazioni. I risultati mostrano che, anche utilizzando modelli piuttosto semplici, è possibile ottenere proiezioni statistiche abbastanza accurate, utilizzabili sia per fini previsivi sia, più propriamente, per il monitoraggio delle entrate e l’individuazione precoce di eventuali scostamenti significativi rispetto alle rispettive previsioni annuali. I modelli descritti in questo lavoro sono di tipo aggregato e come tali si prestano ad integrare ed anticipare le informazioni fornite dai modelli di microsimulazione attualmente utilizzati dal Dipartimento delle Finanze. Tra gli ulteriori impieghi si annovera anche la possibilità di monitorare e prevedere in via sperimentale i flussi di cassa; fornire la stima anticipata di alcuni indicatori macroeconomici a prezzi correnti; valutare l’effetto del ciclo sulle entrate tramite simulazioni dinamiche fuori campione.

Suggested Citation

  • Enrico D’Elia & Francesca Faedda & Giacomo Giannone, 2020. "Un modello statistico per il monitoraggio delle entrate tributarie (MoME)," Working Papers wp2020-5, Ministry of Economy and Finance, Department of Finance.
  • Handle: RePEc:ahg:wpaper:wp2020-5
    as

    Download full text from publisher

    File URL: https://www.finanze.gov.it/export/sites/finanze/.galleries/Documenti/Varie/dfwp5_2020.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marie Bessec, 2013. "Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
    2. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    3. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    4. Laurent Ferrara & Dominique Guégan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 186-199.
    5. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
    6. Franck Sédillot & Nigel Pain, 2003. "Indicator Models of Real GDP Growth in Selected OECD Countries," OECD Economics Department Working Papers 364, OECD Publishing.
    7. Giuseppe Parigi & Roberto Golinelli & Giorgio Bodo, 2000. "Forecasting industrial production in the Euro area," Empirical Economics, Springer, vol. 25(4), pages 541-561.
    8. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    9. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    10. Vincenzo Verardi & Christophe Croux, 2009. "Robust regression in Stata," Stata Journal, StataCorp LP, vol. 9(3), pages 439-453, September.
    11. Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Post-Print halshs-00460461, HAL.
    12. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    13. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
    14. repec:dau:papers:123456789/10079 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    2. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    3. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    4. Dominique Guegan & Patrick Rakotomarolahy, 2010. "Alternative methods for forecasting GDP," Post-Print halshs-00511979, HAL.
    5. Dominique Guegan & Patrick Rakotomarolahy, 2010. "Alternative methods for forecasting GDP," Post-Print halshs-00505165, HAL.
    6. Dominique Guegan & Patrick Rakotomarolahy, 2010. "Alternative methods for forecasting GDP," PSE-Ecole d'économie de Paris (Postprint) halshs-00511979, HAL.
    7. Lorenzo Bencivelli & Massimiliano Marcellino & Gianluca Moretti, 2017. "Forecasting economic activity by Bayesian bridge model averaging," Empirical Economics, Springer, vol. 53(1), pages 21-40, August.
    8. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    9. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
    10. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    11. Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
    12. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    13. Olivier Darne & Amelie Charles, 2020. "Nowcasting GDP growth using data reduction methods: Evidence for the French economy," Economics Bulletin, AccessEcon, vol. 40(3), pages 2431-2439.
    14. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
    15. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    16. Nikolaos Askitas & Klaus F. Zimmermann, 2013. "Nowcasting Business Cycles Using Toll Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 299-306, July.
    17. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    18. Cristea, R. G., 2020. "Can Alternative Data Improve the Accuracy of Dynamic Factor Model Nowcasts?," Cambridge Working Papers in Economics 20108, Faculty of Economics, University of Cambridge.
    19. Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.
    20. Anna Norin, 2011. "Nowcasting of the Gross Regional Product," ERSA conference papers ersa10p768, European Regional Science Association.

    More about this item

    Keywords

    tax revenues forecasting; high-frequency forecasting model; bridge model; Italy tax revenues;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ahg:wpaper:wp2020-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Felicia Calco' (email available below). General contact details of provider: https://edirc.repec.org/data/degraus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.