IDEAS home Printed from https://ideas.repec.org/p/ags/ucbecw/56691.html
   My bibliography  Save this paper

Maximum likelihood with estimating equations

Author

Listed:
  • Grendar, Marian
  • Judge, George G.

Abstract

Methods, like Maximum Empirical Likelihood (MEL), that operate within the Empirical Estimating Equations (E3) approach to estimation and inference are challenged by the Empty Set Problem (ESP). We propose to return from E3 back to the Estimating Equations, and to use the Maximum Likelihood method. In the discrete case the Maximum Likelihood with Estimating Equations (MLEE) method avoids ESP. In the continuous case, how to make ML-EE operational is an open question. Instead of it, we propose a Patched Empirical Likelihood, and demonstrate that it avoids ESP. The methods enjoy, in general, the same asymptotic properties as MEL.

Suggested Citation

  • Grendar, Marian & Judge, George G., 2010. "Maximum likelihood with estimating equations," CUDARE Working Papers 56691, University of California, Berkeley, Department of Agricultural and Resource Economics.
  • Handle: RePEc:ags:ucbecw:56691
    DOI: 10.22004/ag.econ.56691
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/56691/files/CUDARE%201094%20Judge.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.56691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grendar, Marian & Judge, George G., 2009. "Maximum Empirical Likelihood: Empty Set Problem," CUDARE Working Papers 53402, University of California, Berkeley, Department of Agricultural and Resource Economics.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Bruce Brown & Song Chen, 1998. "Combined and Least Squares Empirical Likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 697-714, December.
    4. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    5. Yuichi Kitamura, 2007. "Nonparametric Likelihood: Efficiency And Robustness," The Japanese Economic Review, Japanese Economic Association, vol. 58(1), pages 26-46, March.
    6. Smith, Richard J, 1997. "Alternative Semi-parametric Likelihood Approaches to Generalised Method of Moments Estimation," Economic Journal, Royal Economic Society, vol. 107(441), pages 503-519, March.
    7. Grendar, Marian & Judge, George G, 2009. "Maximum empirical likelihood : empty set problem," CUDARE Working Paper Series 1090, University of California at Berkeley, Department of Agricultural and Resource Economics and Policy.
    8. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grendar, Marian & Judge, George G., 2010. "Revised empirical likelihood," CUDARE Working Papers 91799, University of California, Berkeley, Department of Agricultural and Resource Economics.
    2. Grendar, Marian & Judge, George G, 2009. "Maximum Empirical Likelihood: Empty Set Problem," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt71v338mh, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    4. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    5. Lavergne, Pascal, 2015. "Assessing the Approximate Validity of Moment Restrictions," TSE Working Papers 15-562, Toulouse School of Economics (TSE), revised May 2020.
    6. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    7. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    8. Hahn, Jinyong & Newey, Whitney K. & Smith, Richard J., 2014. "Neglected heterogeneity in moment condition models," Journal of Econometrics, Elsevier, vol. 178(P1), pages 86-100.
    9. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    10. Joaquim Ramalho, 2003. "Small Sample Bias of Alternative Estimation Methods for Moment Condition Models: Monte Carlo Evidence for Covariance Structures and Instrumental Variables," Economics Working Papers 9_2003, University of Évora, Department of Economics (Portugal).
    11. Mikio Ito & Akihiko Noda, 2012. "The GEL estimates resolve the risk-free rate puzzle in Japan," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 365-374, March.
    12. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    13. Demian Pouzo, 2014. "Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension," Papers 1411.2701, arXiv.org, revised Aug 2015.
    14. Stefan Boes, 2007. "Count Data Models with Unobserved Heterogeneity: An Empirical Likelihood Approach," SOI - Working Papers 0704, Socioeconomic Institute - University of Zurich.
    15. Chaudhuri, Saraswata & Renault, Eric, 2020. "Score tests in GMM: Why use implied probabilities?," Journal of Econometrics, Elsevier, vol. 219(2), pages 260-280.
    16. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    17. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    18. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.
    19. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    20. Otsu, Taisuke, 2011. "Moderate deviations of generalized method of moments and empirical likelihood estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1203-1216, September.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ucbecw:56691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.