IDEAS home Printed from https://ideas.repec.org/p/ags/ucbecw/25020.html
   My bibliography  Save this paper

Minimum Divergence Moment Based Binary Response Models: Estimation and Inference

Author

Listed:
  • Mittelhammer, Ronald C.
  • Judge, George G.
  • Miller, Douglas J.
  • Cardell, N. Scott

Abstract

This paper introduces a new class of estimators based on minimization of the Cressie-Read (CR) power divergence measure for binary choice models, where neither a parameterized distribution nor a parameterization of the mean is specified explicitly in the statistical model. By incorporating sample information in the form of conditional moment conditions and estimating choice probabilities by optimizing a member of the set of divergence measures in the CR family, a new class of nonparametric estimators evolves that requires less a priori model structure than conventional parametric estimators such as probit or logit. Asymptotic properties are derived under general regularity conditions and finite sampling properties are illustrated by Monte Carlo sampling experiments. Except for some special cases in which the general regularity conditions do not hold, the estimators have asymptotic normal distributions, similar to conventional parametric estimators of the binary choice model. The sampling experiments focus on the mean square errors in the choice probability predictions and the probability derivatives with respect to the response variable values. The simulation results suggest that estimators within the CR class are more robust than conventional methods of estimation across varying probability distributions underlying the Bernoulli process. The size and power of test statistics based on the asymptotics of the CR-based estimators exhibit behavior similar to those based on conventional parametric methods. Overall, the new class of nonparametric estimators for the binary response model is a promising and potentially more robust alternative to the parametric methods often used in empirical practice.

Suggested Citation

  • Mittelhammer, Ronald C. & Judge, George G. & Miller, Douglas J. & Cardell, N. Scott, 2005. "Minimum Divergence Moment Based Binary Response Models: Estimation and Inference," CUDARE Working Papers 25020, University of California, Berkeley, Department of Agricultural and Resource Economics.
  • Handle: RePEc:ags:ucbecw:25020
    DOI: 10.22004/ag.econ.25020
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/25020/files/wp050998.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.25020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    2. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    3. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    5. Judge G.G. & Mittelhammer R.C., 2004. "A Semiparametric Basis for Combining Estimation Problems Under Quadratic Loss," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 479-487, January.
    6. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    7. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-782, May.
    8. Judge, George G. & Mittelhammer, Ron C, 2004. "Estimating the Link Function in Multinomial Response Models under Endogeneity and Quadratic Loss," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt4422n50w, Department of Agricultural & Resource Economics, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    2. Ron Mittelhammer & George Judge, 2009. "A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 33-49, April.
    3. Sofia Berto Villas-Boas, 2007. "Vertical Relationships between Manufacturers and Retailers: Inference with Limited Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(2), pages 625-652.
    4. Martin O'Connell & Pierre Dubois & Rachel Griffith, 2022. "The Use of Scanner Data for Economics Research," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 723-745, August.
    5. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    6. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    7. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    8. Hanemann, W. Michael & Kanninen, Barbara, 1996. "The Statistical Analysis Of Discrete-Response Cv Data," CUDARE Working Papers 25022, University of California, Berkeley, Department of Agricultural and Resource Economics.
    9. Heinz König & Michael Lechner, 1994. "Some Recent Developments in Microeconometrics - A Survey," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 130(III), pages 299-331, September.
    10. Mogens Fosgerau, 2024. "Nonparametric approaches to describing heterogeneity," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 11, pages 308-318, Edward Elgar Publishing.
    11. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    12. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    13. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    14. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    15. Huang, J u-Chin & Nychka, Douglas W., 2000. "A nonparametric multiple choice method within the random utility framework," Journal of Econometrics, Elsevier, vol. 97(2), pages 207-225, August.
    16. Tushar Kanti Nandi, 2006. "Parametric and Semiparametric Estimation of the Adoption of Work Teams," Department of Economics University of Siena 484, Department of Economics, University of Siena.
    17. Giuseppe De Luca, 2008. "SNP and SML estimation of univariate and bivariate binary-choice models," Stata Journal, StataCorp LP, vol. 8(2), pages 190-220, June.
    18. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
    19. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    20. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2015. "Parametric and Semiparametric IV Estimation of Network Models with Selectivity," EIEF Working Papers Series 1509, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ucbecw:25020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.