IDEAS home Printed from https://ideas.repec.org/p/ags/ucbecw/198660.html
   My bibliography  Save this paper

Bayesian Method of Moments (BMOM) Analysis of Parametric and Semiparametric Regression Models

Author

Listed:
  • Zellner, Arnold
  • Tobias, Justin
  • Ryu, Hang

Abstract

No abstract is available for this item.

Suggested Citation

  • Zellner, Arnold & Tobias, Justin & Ryu, Hang, 1998. "Bayesian Method of Moments (BMOM) Analysis of Parametric and Semiparametric Regression Models," CUDARE Working Papers 198660, University of California, Berkeley, Department of Agricultural and Resource Economics.
  • Handle: RePEc:ags:ucbecw:198660
    DOI: 10.22004/ag.econ.198660
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/198660/files/agecon-cal-834.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.198660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Palm, F. & Zellner, A., 1991. "To combine or not to combine? issues of combining forecasts," LIDAM Discussion Papers CORE 1991022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
    3. Zellner, Arnold & Hong, Chansik, 1989. "Forecasting international growth rates using Bayesian shrinkage and other procedures," Journal of Econometrics, Elsevier, vol. 40(1), pages 183-202, January.
    4. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    5. Zellner, Arnold & Moulton, Brent R., 1985. "Bayesian regression diagnostics with applications to international consumption and income data," Journal of Econometrics, Elsevier, vol. 29(1-2), pages 187-211.
    6. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    7. Ryu, Hang K., 1993. "Maximum entropy estimation of density and regression functions," Journal of Econometrics, Elsevier, vol. 56(3), pages 397-440, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wyi:journl:002099 is not listed on IDEAS
    2. Park, Sung Y. & Bera, Anil K., 2009. "Maximum entropy autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 150(2), pages 219-230, June.
    3. Lorenzo Bencivelli & Massimiliano Marcellino & Gianluca Moretti, 2017. "Forecasting economic activity by Bayesian bridge model averaging," Empirical Economics, Springer, vol. 53(1), pages 21-40, August.
    4. Kazimi, Camilla & Brownstone, David, 1999. "Bootstrap confidence bands for shrinkage estimators," Journal of Econometrics, Elsevier, vol. 90(1), pages 99-127, May.
    5. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    6. Arnold Zellner, 2003. "Some Recent Developments in Econometric Inference," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 203-215.
    7. Poncela, Pilar, 1996. "Pooling information and forecasting with dynamic factor analysis," DES - Working Papers. Statistics and Econometrics. WS 10709, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    9. Sune Karlsson & Tor Jacobson, 2004. "Finding good predictors for inflation: a Bayesian model averaging approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 479-496.
    10. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    11. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    12. Ryu, Hang Keun, 2011. "Subjective model selection rules versus passive model selection rules," Economic Modelling, Elsevier, vol. 28(1-2), pages 459-472, January.
    13. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
    14. Zellner, Arnold & Tobias, Justin, 1998. "A Note on Aggregation, Disaggregation and Forecasting Performance," CUDARE Working Papers 198677, University of California, Berkeley, Department of Agricultural and Resource Economics.
    15. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 307-329.
    16. Francis X. Diebold, 2004. "The Nobel Memorial Prize for Robert F. Engle," Scandinavian Journal of Economics, Wiley Blackwell, vol. 106(2), pages 165-185, June.
    17. Esteban Fernández-Vázquez & Blanca Moreno, 2017. "Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator," Journal of Geographical Systems, Springer, vol. 19(4), pages 349-370, October.
    18. Zellner, Arnold & Tobias, Justin, 2001. "Further Results on Bayesian Method of Moments Analysis of the Multiple Regression Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 121-140, February.
    19. Ryu, Hang Keun, 2011. "Subjective model selection rules versus passive model selection rules," Economic Modelling, Elsevier, vol. 28(1), pages 459-472.
    20. Marsh, L.C.Lawrence C. & Zellner, Arnold, 2004. "Bayesian solutions to graduate admissions and related selection problems," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 405-426.
    21. Poirier, Dale J., 1997. "Comparing and choosing between two models with a third model in the background," Journal of Econometrics, Elsevier, vol. 78(2), pages 139-151, June.

    More about this item

    Keywords

    Production Economics; Public Economics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ucbecw:198660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.