IDEAS home Printed from https://ideas.repec.org/p/ags/saea15/197036.html
   My bibliography  Save this paper

Irrigation technology upgrade and water savings on the Kansas High Plains aquifer

Author

Listed:
  • Upendram, Sreedhar
  • Wibowo, Rulianda
  • Peterson, Jeffrey M.

Abstract

Depleting water resources is a widespread problem across the Kansas High Plains aquifer. The value of irrigation is accentuated due to lack of surface water and low precipitation in western Kansas. Accelerated groundwater withdrawals for irrigation caused a further decline in the saturated thickness of the aquifer. To encourage water conservation and reduce further depletion of the aquifer, federal and state cost-share programs have subsidized irrigation technology upgrades. However, this effort may have been undermined by producers who increased their water usage for irrigation with water-intensive crops. A simulation model comprised of an irrigation scheduling tool coupled with a crop yield simulator are used to predict risk-efficient crop and technology choices, which allows us to estimate the effect of an irrigation technology upgrade on the aquifer. This research characterizes producers’ decisions to maintain economic viability while adapting to limited irrigation conditions. The study will identify the conditions under which technology upgrades will both save water and increase farmers’ returns from irrigation. The study also estimates the threshold payments to farmers to switch to relatively less water-intensive crops that will promote water conservation on the High Plains aquifer.

Suggested Citation

  • Upendram, Sreedhar & Wibowo, Rulianda & Peterson, Jeffrey M., 2015. "Irrigation technology upgrade and water savings on the Kansas High Plains aquifer," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 197036, Southern Agricultural Economics Association.
  • Handle: RePEc:ags:saea15:197036
    DOI: 10.22004/ag.econ.197036
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/197036/files/Technology%20Upgrade%20%2001%2015%202015.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.197036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Brian Hardaker & James W. Richardson & Gudbrand Lien & Keith D. Schumann, 2004. "Stochastic efficiency analysis with risk aversion bounds: a simplified approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 253-270, June.
    2. Ding, Ya & Peterson, Jeffrey M., 2012. "Comparing the Cost-Effectiveness of Water Conservation Policies in a Depleting Aquifer: A Dynamic Analysis of the Kansas High Plains," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 44(2), pages 1-12, May.
    3. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    4. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    5. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schumann, Keith D. & Richardson, James W. & Lien, Gudbrand D. & Hardaker, J. Brian, 2004. "Stochastic Efficiency Analysis Using Multiple Utility Functions," 2004 Annual meeting, August 1-4, Denver, CO 19957, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Gandorfer, Markus & Pannell, David & Meyer-Aurich, Andreas, 2011. "Analyzing the effects of risk and uncertainty on optimal tillage and nitrogen fertilizer intensity for field crops in Germany," Agricultural Systems, Elsevier, vol. 104(8), pages 615-622, October.
    3. Lien, G. & Stordal, S. & Hardaker, J.B. & Asheim, L.J., 2007. "Risk aversion and optimal forest replanting: A stochastic efficiency study," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1584-1592, September.
    4. Liu, Yangxuan & Langemeier, Michael & Small, Ian & Joseph, Laura & Fry, William, 2015. "Risk management strategies using potato precision farming technology," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205417, Agricultural and Applied Economics Association.
    5. Yangxuan Liu & Michael R. Langemeier & Ian M. Small & Laura Joseph & William E. Fry & Jean B. Ristaino & Amanda Saville & Benjamin M. Gramig & Paul V. Preckel, 2018. "A Risk Analysis of Precision Agriculture Technology to Manage Tomato Late Blight," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
    6. Schumann, Keith D., 2011. "Semi-nonparametric test of second degree stochastic dominance with respect to a function," Journal of Econometrics, Elsevier, vol. 162(1), pages 71-78, May.
    7. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    8. Uttam Khanal & Kerry J. Stott & Roger Armstrong & James G. Nuttall & Frank Henry & Brendan P. Christy & Meredith Mitchell & Penny A. Riffkin & Ashley J. Wallace & Malcolm McCaskill & Thabo Thayalakuma, 2021. "Intercropping—Evaluating the Advantages to Broadacre Systems," Agriculture, MDPI, vol. 11(5), pages 1-20, May.
    9. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    10. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    11. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    12. Heller, Yuval & Schreiber, Amnon, 2020. "Short-term investments and indices of risk," Theoretical Economics, Econometric Society, vol. 15(3), July.
    13. Joseph Aharony & Sasson Bar†Yosef, 1987. "Tests of the impact of LIFO adoption on stockholders: A stochastic dominance approach," Contemporary Accounting Research, John Wiley & Sons, vol. 3(2), pages 430-444, March.
    14. Chateauneuf, Alain & Cohen, Michele & Meilijson, Isaac, 2004. "Four notions of mean-preserving increase in risk, risk attitudes and applications to the rank-dependent expected utility model," Journal of Mathematical Economics, Elsevier, vol. 40(5), pages 547-571, August.
    15. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.
    16. Tsang, Chun-Kei & Wong, Wing-Keung & Horowitz, Ira, 2016. "A stochastic-dominance approach to determining the optimal home-size purchase: The case of Hong Kong," MPRA Paper 69175, University Library of Munich, Germany.
    17. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    18. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    19. Arvanitis, Stelios & Scaillet, Olivier & Topaloglou, Nikolas, 2020. "Spanning tests for Markowitz stochastic dominance," Journal of Econometrics, Elsevier, vol. 217(2), pages 291-311.
    20. Yaffa Machnes, 2003. "Stochastic Dominance of Pension Plans," Metroeconomica, Wiley Blackwell, vol. 54(1), pages 49-59, February.

    More about this item

    Keywords

    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saea15:197036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.