IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332653.html
   My bibliography  Save this paper

A GTAP-based approach to keep track future progress in sustainability and resource efficiency

Author

Listed:
  • Eboli, Fabio
  • Lorenza, Campagnolo

Abstract

Since the Rio+20 conference on sustainable development in 2012, the United Nations and other international institutions such as the World Bank and the OECD have started working to forge the new agenda for the post-2015 economic development. There are new challenges raised by the globalization era that sheds light on the potential conflicts within growing economies, both in developed and developing countries. Historically, most of environmental related macro-economic analysis has coped with climate change impacts and mitigation policies, as well as agricultural issues with special focus on water scarcity and food security. Nevertheless, an important indicator to monitor in order to check the actual pressure on natural resources refers also to higher efficiency in resource use. Moreover, we need to extend the economy-environment dichotomy within the broader context of sustainable and multi-dimensional development. European Union (EU), along with a leading role for tackling climate change, is now considering a broader vision for next development being smart, sustainable and inclusive. EU has implemented an effective monitoring system and defined significant targets to be achieved in the short and medium term. Moreover, EU identifies seven flagship initiatives as tools to fulfil the development strategy. Among these initiative, Resource efficiency plays an important role as allows measuring the pressure on natural capital. The main indicator in this respect is the so-called Material Productivity, computed as the ratio between GDP and raw material consumption. This paper has a quite ambitious scope. Within the CGE GTAP-based framework, we propose a new approach in which the macro-economic setting is extended with the inclusion of social and environmental indicators, in order to project future trends of a set of twenty-three sustainable development indicators covering the three sustainability areas (economy, society and environment). It is worth mentioning that w...

Suggested Citation

  • Eboli, Fabio & Lorenza, Campagnolo, 2015. "A GTAP-based approach to keep track future progress in sustainability and resource efficiency," Conference papers 332653, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332653
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332653/files/7322.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Roson & Richard Damania, the World Bank, Washington D.C., 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity," EcoMod2016 9167, EcoMod.
    2. Sudarshan Chalise & Athula Naranpanawa, 2023. "Potential impacts of climate change and adaptation in agriculture on poverty: the case of Nepal," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 28(4), pages 1540-1559, October.
    3. Ciscar, Juan-Carlos & Dowling, Paul, 2014. "Integrated assessment of climate impacts and adaptation in the energy sector," Energy Economics, Elsevier, vol. 46(C), pages 531-538.
    4. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    6. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    7. Paul I. Ojeaga & Sunday M. Posu, 2017. "Climate Change, Industrial Activity and Economic Growth: A Cross Regional Analysis," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 5(2), pages 7-17, December.
    8. Dellink, Rob & Lanzi, Elisa, 2017. "The joint economic consequences of climate change and air pollution," Conference papers 332909, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Bosello, Francesco & Marangoni, Giacomo & Orecchia, Carlo & Raitzer, David A. & Tavoni, Massimo, 2016. "The Cost of Climate Stabilization in Southeast Asia, a Joint Assessment with Dynamic Optimization and CGE Models," MITP: Mitigation, Innovation and Transformation Pathways 251810, Fondazione Eni Enrico Mattei (FEEM).
    10. Ruslana Rachel PALATNIK, 2008. "Climate Change Assessment and Agriculture in General Equilibrium Models: Alternative Modeling Strategies," EcoMod2008 23800101, EcoMod.
    11. Bosello, Francesco & Orecchia, Carlo & Parrado, Ramiro, 2013. "The additional contribution of non-CO2 mitigation in climate policy costs and efforts in Europe," Conference papers 332363, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Montaud, Jean-Marc & Pecastaing, Nicolas & Tankari, Mahamadou, 2017. "Potential socio-economic implications of future climate change and variability for Nigerien agriculture: A countrywide dynamic CGE-Microsimulation analysis," Economic Modelling, Elsevier, vol. 63(C), pages 128-142.
    13. Chalise, Sudarshan & Naranpanawa, Athula & Bandara, Jayatilleke, 2017. "Climate change adaptation, agriculture and poverty: A general equilibrium analysis for Nepal," Conference papers 332878, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Peter H. Howard & Thomas Sterner, 2017. "Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 197-225, September.
    15. Khellaf, Ayache & Nihou, Abdelaziz & Baray, Abdoul G. & van der Mensbrugghe, Dominique & Liverani, Andrea & Tyner, Wallace E., 2014. "Socioeconomic impacts of green energy growth policy in Morocco - a general equilibrium analysis," Conference papers 332493, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    17. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    18. Coppens, Léo & Dietz, Simon & Venmans, Frank, 2024. "Optimal climate policy under exogenous and endogenous technical change: making sense of the different approaches," LSE Research Online Documents on Economics 124548, London School of Economics and Political Science, LSE Library.
    19. Carlo Carraro & Lorenza Campagnolo & Fabio Eboli & Elisa Lanzi & Ramiro Parrado & Elisa Portale, 2012. "Quantifying Sustainability: A New Approach and World Ranking," Working Papers 2012.94, Fondazione Eni Enrico Mattei.
    20. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.