IDEAS home Printed from https://ideas.repec.org/p/ags/nddaae/101783.html
   My bibliography  Save this paper

Aggregation Issues in the Estimation of Linear Programming Productivity Measures

Author

Listed:
  • Shaik, Saleem
  • Mishra, Ashok K.
  • Atwood, Joseph A.

Abstract

This paper demonstrates the sensitivity of the linear programming approach in the estimation of productivity measures in the primal framework using Malmquist productivity index and Malmquist total factor productivity index models. Specifically, the sensitivity of productivity measure to the number of constraints (level of dis-aggregation) and imposition of returns to scale constraints of linear programing is evaluated. Further, the shadow or dual values are recovered from the linear program and compared to the market prices used in the ideal Fisher index approach to illustrate sensitivity. Empirical application to U.S. state-level time series data from 1960-2004 reveal productivity change decreases with increases in the number of constraints. Further, the input and output shadow or dual values are skewed, leading to the difference in the productivity measures due to aggregation.

Suggested Citation

  • Shaik, Saleem & Mishra, Ashok K. & Atwood, Joseph A., 2011. "Aggregation Issues in the Estimation of Linear Programming Productivity Measures," Agribusiness & Applied Economics Report 101783, North Dakota State University, Department of Agribusiness and Applied Economics.
  • Handle: RePEc:ags:nddaae:101783
    DOI: 10.22004/ag.econ.101783
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/101783/files/AAE673.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.101783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fare, Rolf & Zelenyuk, Valentin, 2003. "On aggregate Farrell efficiencies," European Journal of Operational Research, Elsevier, vol. 146(3), pages 615-620, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakouvogui Kekoura & Shaik Saleem & Addey Kwame Asiam, 2020. "Cluster-Adjusted DEA Efficiency in the presence of Heterogeneity: An Application to Banking Sector," Open Economics, De Gruyter, vol. 3(1), pages 50-69, January.
    2. Saleem Shaik & Joseph Atwood, 2020. "A Comparative Study of Alternative Approaches to Estimate Productivity," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(4), pages 747-766, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolf Fare & Valentin Zelenyuk, 2005. "On Farrell's Decomposition and Aggregation," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 4(2), pages 167-171, August.
    2. Victoria Kravtsova, 2008. "Foreign presence and efficiency in transition economies," Journal of Productivity Analysis, Springer, vol. 29(2), pages 91-102, April.
    3. Cherchye, Laurens & De Rock, Bram & Kerstens, Pieter Jan, 2018. "Production with storable and durable inputs: Nonparametric analysis of intertemporal efficiency," European Journal of Operational Research, Elsevier, vol. 270(2), pages 498-513.
    4. Gary Ferrier & Hervé Leleu & Vivian Valdmanis, 2009. "Hospital capacity in large urban areas: is there enough in times of need?," Journal of Productivity Analysis, Springer, vol. 32(2), pages 103-117, October.
    5. Fang, Lei & Li, Hecheng, 2013. "A comment on “solving the puzzles of structural efficiency”," European Journal of Operational Research, Elsevier, vol. 230(2), pages 444-446.
    6. Chun-kei Tsang & Sung-ko Li, 2020. "Allocation of resources within subgroups of an industry: a case study in the Chinese industrial sector," Journal of Productivity Analysis, Springer, vol. 53(1), pages 125-139, February.
    7. Anatoly Pilyavsky & Matthias Staat, 2008. "Efficiency and productivity change in Ukrainian health care," Journal of Productivity Analysis, Springer, vol. 29(2), pages 143-154, April.
    8. Zelenyuk, Valentin, 2015. "Aggregation of scale efficiency," European Journal of Operational Research, Elsevier, vol. 240(1), pages 269-277.
    9. Barnabé Walheer, 2019. "Disaggregation for efficiency analysis," Journal of Productivity Analysis, Springer, vol. 51(2), pages 137-151, June.
    10. Walheer, Barnabé, 2019. "Aggregating Farrell efficiencies with private and public inputs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1170-1177.
    11. Vitaliy Zheka, 2005. "Corporate governance, ownership structure and corporate efficiency: the case of Ukraine," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 26(7), pages 451-460.
    12. Shiu, Alice & Zelenyuk, Valentin, 2009. "Production Efficiency versus Ownership: The Case of China," MPRA Paper 23760, University Library of Munich, Germany, revised 22 Mar 2010.
    13. Astrid Cullmann & Christian Hirschhausen, 2008. "Efficiency analysis of East European electricity distribution in transition: legacy of the past?," Journal of Productivity Analysis, Springer, vol. 29(2), pages 155-167, April.
    14. Salim, Ruhul & Arjomandi, Amir & Seufert, Juergen Heinz, 2016. "Does corporate governance affect Australian banks' performance?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 113-125.
    15. Karagiannis, Roxani & Karagiannis, Giannis, 2018. "Intra- and inter-group composite indicators using the BoD model," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 44-51.
    16. Barnabé Walheer, 2019. "Dynamic directional nonparametric profit efficiency analysis for a single decision-making unit: an aggregation approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1123-1149, December.
    17. Antonio Peyrache, 2014. "Cost Constrained Industry Inefficiency," CEPA Working Papers Series WP042014, School of Economics, University of Queensland, Australia.
    18. Cherchye, Laurens & Rock, Bram De & Saelens, Dieter & Verschelde, Marijn & Roets, Bart, 2024. "Productive efficiency analysis with unobserved inputs: An application to endogenous automation in railway traffic management," European Journal of Operational Research, Elsevier, vol. 313(2), pages 678-690.
    19. Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017. "Aggregate green productivity growth in OECD’s countries," International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
    20. Simar, Léopold & Zelenyuk, Valentin & Zhao, Shirong, 2024. "Inference for aggregate efficiency: Theory and guidelines for practitioners," European Journal of Operational Research, Elsevier, vol. 316(1), pages 240-254.

    More about this item

    Keywords

    Agribusiness; Production Economics;

    JEL classification:

    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:nddaae:101783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dandsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.