IDEAS home Printed from https://ideas.repec.org/p/ags/midasp/11740.html
   My bibliography  Save this paper

Forecasting World Crop Yields as Probability Distributions

Author

Listed:
  • Ferris, John N.

Abstract

Traditionally, agricultural forecasts, whether for the coming year or several years into the future, have been based on assumptions of normal weather and trend crop yields. That weather is seldom normal and that yields seldom fit trends are well recognized. However, relatively little attention has been given to projecting crop yields stochastically even though computer capacity and software programs are available to do so. One reason is that the task is more challenging than to assign standard deviations to various crop yields and simulate normal distributions using random number generators. For one, deviations of crop yields from trends may be correlated especially if the locations of the crops overlap such as is the case with US corn and soybeans. To model US agriculture, those correlations must be taken into account. Secondly, deviations of crop yields from trends may not be normal. Typically, crop yield deviations are skewed to the low side, with yields lower in poor crop years than higher in favorable crop years. This paper demonstrates how computer software programs can be used to generate probability distributions of yields taking into consideration correlations among crops and non-normality in distributions. Included are thirteen crops and crop aggregates with global coverage of coarse grains, wheat and oilseeds. Probability forecasts are made for 2006 and illustrated for US corn, soybeans and wheat.

Suggested Citation

  • Ferris, John N., 2006. "Forecasting World Crop Yields as Probability Distributions," Staff Paper Series 11740, Michigan State University, Department of Agricultural, Food, and Resource Economics.
  • Handle: RePEc:ags:midasp:11740
    DOI: 10.22004/ag.econ.11740
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/11740/files/sp06-35.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.11740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richardson, James W. & Klose, Steven L. & Gray, Allan W., 2000. "An Applied Procedure For Estimating And Simulating Multivariate Empirical (Mve) Probability Distributions In Farm-Level Risk Assessment And Policy Analysis," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 32(2), pages 1-17, August.
    2. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    3. repec:ags:joaaec:v:30:y:1998:i:1:p:21-33 is not listed on IDEAS
    4. repec:ags:joaaec:v:32:y:2000:i:2:p:299-315 is not listed on IDEAS
    5. Teigen, Lloyd D. & Bell, Thomas M., 1978. "Confidence Intervals For Corn Price And Utilization Forecasts," Journal of Agricultural Economics Research, United States Department of Agriculture, Economic Research Service, vol. 30(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Cunha, 2010. "Modelling the Cyclical Behaviour of Wine Production in the Douro Region Using a Time-Varying Parameters Approach," Working Papers 2010.1, International Network for Economic Research - INFER.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Gerlach & Matthew S. Yiu, 2004. "A Dynamic Factor Model for Current-Quarter Estimates of Economic Activity in Hong Kong," Working Papers 162004, Hong Kong Institute for Monetary Research.
    2. Chatziantoniou, Ioannis & Gabauer, David, 2021. "EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 1-14.
    3. Guglielmo Caporale & Nikitas Pittis & Nicola Spagnolo, 2006. "Volatility transmission and financial crises," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 30(3), pages 376-390, September.
    4. Stephan Höcht & Rudi Zagst, 2010. "Pricing credit derivatives under stochastic recovery in a hybrid model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 254-276, May.
    5. Jinan Liu & Apostolos Serletis, 2023. "Volatility and dependence in energy markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(1), pages 15-37, March.
    6. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    7. Silvio John Camilleri & Ritienne Farrugia, 2018. "The Risk-Adjusted Performance of Alternative Investment Funds and UCITS: A Comparative Analysis," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(7), pages 1-23, July.
    8. Kim, Chang-Jin & Morley, James C. & Nelson, Charles R., 2001. "Does an intertemporal tradeoff between risk and return explain mean reversion in stock prices?," Journal of Empirical Finance, Elsevier, vol. 8(4), pages 403-426, September.
    9. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    10. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    11. Man-Keun Kim & Ertqian Zhu & Thomas R. Harris & Jonathan E. Alevy, 2012. "An LP-SAM Approach for Examining Regional Economic Impacts: An Application to Wildfire Disasters in Southeast Oregon," The Review of Regional Studies, Southern Regional Science Association, vol. 42(3), pages 207-221, Winter.
    12. Neil R. Ericsson, 1986. "Post-simulation Analysis of Monte Carlo Experiments: Interpreting Pesaran's (1974) Study of Non-nested Hypothesis Test Statistics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 691-707.
    13. D J Pedregal & P C Young, 2008. "Development of improved adaptive approaches to electricity demand forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1066-1076, August.
    14. Kevin Keasey & Helen Short, 1997. "Equity retention and initial public offerings: the influence of signalling and entrenchment effects," Applied Financial Economics, Taylor & Francis Journals, vol. 7(1), pages 75-85.
    15. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    16. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    17. Rocco Ciciretti & Gerald P. Dwyer & Iftekhar Hasan, 2009. "Investment analysts' forecasts of earnings," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 545-568.
    18. Amendola, Alessandra & Niglio, Marcella & Vitale, Cosimo, 2006. "The moments of SETARMA models," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 625-633, March.
    19. Chen, Chih-Chun & Chen, Chun-Da & Lien, Donald, 2024. "Transmission process and determinants of sovereign credit contagions: Global evidence," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 552-567.
    20. Elie Bouri & Georges Azzi, 2014. "On the Dynamic Transmission of Mean and Volatility across the Arab Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 13(3), pages 279-304, December.

    More about this item

    Keywords

    Crop Production/Industries;

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:midasp:11740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/damsuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.