IDEAS home Printed from https://ideas.repec.org/p/ags/iaae06/25386.html
   My bibliography  Save this paper

Modeling and Pricing Rain Risk

Author

Listed:
  • Musshoff, Oliver
  • Odening, Martin
  • Xu, Wei

Abstract

In this paper we price a precipitation option based on empirical weather data from Germany using different pricing methods, among them Burn Analysis, Index Value Simulation and Daily Simulation. For that purpose we develop a daily precipitation model. Moreover, a decorrelation analysis is proposed to assess the spatial basis risk that is inherent to rainfall derivatives. The models are applied to precipitation data in Brandenburg, Germany. Based on simplifying assumptions of the production function, we quantify and compare the risk exposure of grain producers with and without rainfall insurance. It turns out that a considerable risk remains with producers who are remotely located from the weather station. Another finding is that significant differences may occur between the pricing methods. We identify the strengths and weaknesses of the pricing methods and give some recommendations for their applications. Our results are relevant for producers as well as for potential sellers of weather derivatives.

Suggested Citation

  • Musshoff, Oliver & Odening, Martin & Xu, Wei, 2006. "Modeling and Pricing Rain Risk," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25386, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae06:25386
    DOI: 10.22004/ag.econ.25386
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/25386/files/cp062911.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.25386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richards, Timothy J. & Manfredo, Mark R. & Sanders, Dwight R., 2004. "Pricing Weather Derivatives," Working Papers 28536, Arizona State University, Morrison School of Agribusiness and Resource Management.
    2. Calum G. Turvey, 2001. "Weather Derivatives for Specific Event Risks in Agriculture," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 23(2), pages 333-351.
    3. Dwight R. Sanders, 2004. "Pricing Weather Derivatives," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1005-1017.
    4. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carter, Chris & Crean, Jason & Kingwell, Ross S. & Hertzler, Greg, 2006. "Managing and Sharing the Risks of Drought in Australia," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25319, International Association of Agricultural Economists.
    2. Heidelbach, Olaf, 2007. "Efficiency of selected risk management instruments: An empirical analysis of risk reduction in Kazakhstani crop production," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 40, number 92323.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Musshoff, Oliver & Odening, Martin & Xu, Wei, 2005. "Zur Reduzierung niederschlagsbedingter Produktionsrisiken mit Wetterderivaten," Working Paper Series 18822, Humboldt University Berlin, Department of Agricultural Economics.
    3. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2021. "Weather derivatives to mitigate meteorological risks in tourism management: An empirical application to celebrations of Comunidad Valenciana (Spain)," Tourism Economics, , vol. 27(4), pages 591-613, June.
    4. Angelos Prentzas & Thomas Bournaris & Stefanos Nastis & Christina Moulogianni & George Vlontzos, 2024. "Enhancing Sustainability through Weather Derivative Option Contracts: A Risk Management Tool in Greek Agriculture," Sustainability, MDPI, vol. 16(17), pages 1-18, August.
    5. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2020. "Approaching rainfall-based weather derivatives pricing and operational challenges," Review of Derivatives Research, Springer, vol. 23(2), pages 163-190, July.
    6. Turvey, Calum G. & Weersink, Alfons, 2005. "Pricing Weather Insurance with a Random Strike Price: An Application to the Ontario Ice Wine Harvest," 2005 Annual meeting, July 24-27, Providence, RI 19255, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Boyle, Colin F.H. & Haas, Jannik & Kern, Jordan D., 2021. "Development of an irradiance-based weather derivative to hedge cloud risk for solar energy systems," Renewable Energy, Elsevier, vol. 164(C), pages 1230-1243.
    8. Zhang, Li, 2008. "Three essays on agricultural risk and insurance," ISU General Staff Papers 2008010108000016857, Iowa State University, Department of Economics.
    9. Deng, Xiaohui & Barnett, Barry J. & Hoogenboom, Gerrit & Yu, Yingzhuo & Garcia, Axel Garcia y, 2008. "Alternative Crop Insurance Indexes," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 223-237, April.
    10. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    11. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    12. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Hedging von Mengenrisiken in der Landwirtschaft – Wie teuer dürfen „ineffektive“ Wetterderivate sein?," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(05), pages 1-12.
    13. Mußhoff, O. & Odenin, M. & Wei, X., 2007. "Zur Quantifizierung des Basisrisikos von Wetterderivaten," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 42, March.
    14. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    15. Lin, Shanshan & Mullen, Jeffrey D. & Hoogenboom, Gerrit, 2009. "Spatial and Temporal On-Farm Risk Management - Crop Production Scheduling and Index Insurance Strategies," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49350, Agricultural and Applied Economics Association.
    16. Marcos Gallacher & Daniel Lema & Laura Gastaldi & Alejandro Galetto, 2016. "Climate variability and agricultural production in argentina: the role of risk-transfer mechanisms," Ensayos de Política Económica, Departamento de Investigación Francisco Valsecchi, Facultad de Ciencias Económicas, Pontificia Universidad Católica Argentina., vol. 2(4), pages 11-38, Octubre.
    17. L. Kermiche & N. Vuillermet, 2016. "Weather derivatives structuring and pricing: a sustainable agricultural approach in Africa," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 165-177, January.
    18. Raimova, Gulnora, 2011. "Variance reduction methods at the pricing of weather options," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 21(1), pages 3-15.
    19. Markus Stowasser, 2011. "Modelling rain risk: a multi-order Markov chain model approach," Journal of Risk Finance, Emerald Group Publishing, vol. 13(1), pages 45-60, December.
    20. Mark Manfredo & Timothy Richards, 2009. "Hedging with weather derivatives: a role for options in reducing basis risk," Applied Financial Economics, Taylor & Francis Journals, vol. 19(2), pages 87-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae06:25386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.