IDEAS home Printed from https://ideas.repec.org/p/ags/eaae11/114347.html
   My bibliography  Save this paper

Large-Scale Modelling of Global Food Security and Adaptation under Crop Yield Uncertainty

Author

Listed:
  • Fuss, Sabine
  • Havlik, Petr
  • Szolgayova, Jana
  • Schmid, Erwin
  • Obersteiner, Michael

Abstract

Concerns about future food security in the face of volatile and potentially lower yields due to climate change have been at the heart of recent discussions on adaptation strategies in the agricultural sector. While there are a variety of studies trying to quantify the impact of climate change on yields, some of that literature also acknowledges the fact that these estimates are subject to substantial uncertainty. The question arises how such uncertainty will affect decision-making if ensuring food security is an explicit objective. Also, it will be important to establish, which options for adaptation are most promising in the face of volatile yields. The analysis is carried out using a stochastic version of the Global Biosphere Management Model (GLOBIOM) model, which is a global recursive dynamic partial equilibrium bottom-up model integrating the agricultural, bio-energy and forestry sectors with the aim to give policy advice on global issues concerning land use competition between the major land-based production sectors. The source of stochasticity is the interannual crop yield variability, making it more risky to rely on average yields and thus requiring stochastic optimization techniques. The results indicate that food security requires overproduction to meet minimum food supply constraints also in scenarios of negative yield shocks, where the additional land needed is sourced from forests and other natural land. Trade liberalization and enhanced irrigation both appear to be promising food supply stabilization, and hence land saving, mechanisms in the face of missing storage.

Suggested Citation

  • Fuss, Sabine & Havlik, Petr & Szolgayova, Jana & Schmid, Erwin & Obersteiner, Michael, 2011. "Large-Scale Modelling of Global Food Security and Adaptation under Crop Yield Uncertainty," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114347, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae11:114347
    DOI: 10.22004/ag.econ.114347
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/114347/files/Fuss_Sabine_173.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.114347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Gerald C. & Rosegrant, Mark W. & Koo, Jawoo & Robertson, Richard & Sulser, Timothy & Zhu, Tingju & Ringler, Claudia & Msangi, Siwa & Palazzo, Amanda & Batka, Miroslav & Magalhaes, Marilia & Va, 2009. "Climate change: Impact on agriculture and costs of adaptation," Food policy reports 21, International Food Policy Research Institute (IFPRI).
    2. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    3. You, Liangzhi & Wood, Stanley, 2006. "An entropy approach to spatial disaggregation of agricultural production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 329-347, October.
    4. Chen, Chi-Chung & McCarl, Bruce, 2009. "Hurricanes and Possible Intensity Increases: Effects on and Reactions from U.S. Agriculture," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(1), pages 125-144, April.
    5. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    6. Nelson, Gerald C. & Rosegrant, Mark W. & Palazzo, Amanda & Gray, Ian & Ingersoll, Christina & Robertson, Richard & Tokgoz, Simla & Zhu, Tingju & Sulser, Timothy B. & Ringler, Claudia & Msangi, Siwa & , 2010. "Food security, farming, and climate change to 2050: Scenarios, results, policy options," Research reports Gerald C. Nelson, et al., International Food Policy Research Institute (IFPRI).
    7. Beach, Robert H. & Thomson, Allison M. & McCarl, Bruce A., 2010. "Climate Change Impacts On Us Agriculture," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91393, International Agricultural Trade Research Consortium.
    8. Kiniry, James R. & Major, D. J. & Izarralde, R. C. & Williams, J. R. & Gassman, Philip W. & Morrison, M. & Bergentine, R. & Zentner, R. P., 1995. "Epic Model Parameters for Cereal, Oilseed, and Forage Crops in the Northern Great Plains Region," Staff General Research Papers Archive 894, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lászlók, Annet, 2012. "The impact of energy crop production on land use in Hungary," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 12(27), pages 1-9, September.
    2. Creamer, Bernado & Enahoro, Dolapo & Kleinwechter, Ulrich & Gbegbelegbe, Sika & Hareau, Guy & Swamikannu, Nedumaran & Nelgen, Signe & Telleria, Roberto & Wiebe, Keith, 2015. "Interpreting results from using bio-economic modeling for global and regional ex ante impact assessment," 2015 Conference, August 9-14, 2015, Milan, Italy 211648, International Association of Agricultural Economists.
    3. A. V. Pastor & A. Palazzo & P. Havlik & H. Biemans & Y. Wada & M. Obersteiner & P. Kabat & F. Ludwig, 2019. "The global nexus of food–trade–water sustaining environmental flows by 2050," Nature Sustainability, Nature, vol. 2(6), pages 499-507, June.
    4. Timothy A. Wise, 2013. "Can We Feed the World in 2050? A Scoping Paper to Assess the Evidence," GDAE Working Papers 13-04, GDAE, Tufts University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas, Timothy S., 2015. "US maize data reveals adaptation to heat and water stress:," IFPRI discussion papers 1485, International Food Policy Research Institute (IFPRI).
    2. Hertel, Thomas W. & Lobell, David B., 2014. "Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions," Energy Economics, Elsevier, vol. 46(C), pages 562-575.
    3. Schmitz, Christoph & van Meijl, Hans & Kyle, Page & Fujimori, Shinichiro & Gurgel, Angelo & Havlik, Petr & d'Croz, Daniel Mason & Popp, Alexander & Sands, Ron & Tabeau, Andrzej & van der Mensbrugghe, , 2013. "An agro-economic model comparison of cropland change until 2050," Conference papers 332351, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Hachigonta, Sepo & Nelson, Gerald C. & Thomas, Timothy S. & Sibanda, Lindiwe M., 2013. "Overview," IFPRI book chapters, in: Hachigonta, Sepo & Nelson, Gerald C. & Thomas, Timothy S. & Sibanda, Lindiwe Majele (ed.), Southern African agriculture and climate change: A comprehensive analysis, chapter 1, pages 1-24, International Food Policy Research Institute (IFPRI).
    5. Bruce A McCarl & Thomas W Hertel, 2018. "Climate Change as an Agricultural Economics Research Topic," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 40(1), pages 60-78.
    6. Havlik, Petr & Herrero, Mario & Mosnier, Aline & Obersteiner, Michael & Schmid, Erwin & Fuss, Sabine & Schneider, Uwe A., 2011. "Production system based global livestock sector modeling: Good news for the future," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114552, European Association of Agricultural Economists.
    7. Wiebelt, Manfred & Breisinger, Clemens & Ecker, Olivier & Al-Riffai, Perrihan & Robertson, Richard & Thiele, Rainer, 2011. "Climate change and floods in Yemen: Impacts on food security and options for adaptation," IFPRI discussion papers 1139, International Food Policy Research Institute (IFPRI).
    8. Ouraich, Ismail & Dudu, Hasan & Tyner, Wallace E. & Cakmak, Erol, 2014. "Could Free Trade Alleviate Effects of Climate Change: A Worldwide Analysis with Emphasis on Morocco and Turkey," Conference papers 332460, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Kiselev, Sergey & Romashkin, Roman & Nelson, Gerald C. & Mason-D'Croz, Daniel & Palazzo, Amanda, 2013. "Russia's food security and climate change: Looking into the future," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 7, pages 1-66.
    10. Taheripour, Farzad & Hertel, Thomas W. & Liu, Ling, 2013. "Water reliability, irrigation adoption, and land use changes in the presence of biofuel production," Conference papers 332398, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    12. Sherman Robinson & Hans Meijl & Dirk Willenbockel & Hugo Valin & Shinichiro Fujimori & Toshihiko Masui & Ron Sands & Marshall Wise & Katherine Calvin & Petr Havlik & Daniel Mason d'Croz & Andrzej Tabe, 2014. "Comparing supply-side specifications in models of global agriculture and the food system," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 21-35, January.
    13. Mosnier, A. & Havlík, P. & Valin, H. & Baker, J. & Murray, B. & Feng, S. & Obersteiner, M. & McCarl, B.A. & Rose, S.K. & Schneider, U.A., 2013. "Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth," Energy Policy, Elsevier, vol. 57(C), pages 602-614.
    14. Bobojonov, Ihtiyor & Aw-Hassan, Aden, 2014. "Impacts of climate change on farm income security in Central Asia: An integrated modeling approach," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 188, pages 245-255.
    15. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    16. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    17. Takle, Eugene S. & Gustafson, David & Beachy, Roger & Neslon, Gerald C. & Mason-D'Croz, Daniel & Palazzo, Amanda, 2013. "US food security and climate change: Agricultural futures," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 7, pages 1-41.
    18. Shenggen Fan, 2016. "A Nexus Approach to Food, Water, and Energy: Sustainably Meeting Asia’s Future Food and Nutrition Requirements," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 297-311.
    19. Hassan, Shuaib M. & Ikuenobe, Celestine E. & Jalloh, Abdulai & Nelson, Gerald C. & Thomas, Timothy S., 2013. "Nigeria," IFPRI book chapters, in: Jalloh, Abdulai & Nelson, Gerald C. & Thomas, Timothy S. & Zougmore, Robert & Roy-Macauley, Harold (ed.), West African agriculture and climate change: A comprehensive analysis, chapter 10, pages 259-290, International Food Policy Research Institute (IFPRI).
    20. Wiebelt, Manfred & Breisinger, Clemens & Ecker, Olivier & Al-Riffai, Perrihan & Robertson, Richard & Thiele, Rainer, 2013. "Compounding food and income insecurity in Yemen: Challenges from climate change," Food Policy, Elsevier, vol. 43(C), pages 77-89.

    More about this item

    Keywords

    Crop Production/Industries; Food Security and Poverty;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae11:114347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.