IDEAS home Printed from https://ideas.repec.org/p/ags/aaea16/236147.html
   My bibliography  Save this paper

Interpreting Results of Demand Estimation from Machine Learning Models

Author

Listed:
  • Green, Gareth
  • Richards, Timothy

Abstract

There is developing interest in the application of Machine Learning Models (MLM) to estimation problems in economics. MLM may be particularly well suited to applications in retail, health care, energy, finance or for web based businesses where large amounts of data are available to help make better decisions and better understand consumer behavior. There are three reasons economists may want to adopt new MLM tools. First is the size of available data sets. Second, these new data sets have many potential predictors where domain knowledge may not be helpful in distinguishing which available data are most relevant. Third, larger data sets allow for modeling more complex relationships than the standard linear model, which is what MLM are able to capture.

Suggested Citation

  • Green, Gareth & Richards, Timothy, 2016. "Interpreting Results of Demand Estimation from Machine Learning Models," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236147, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea16:236147
    DOI: 10.22004/ag.econ.236147
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/236147/files/AAEA_2016_10026.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.236147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    2. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Demand Estimation with Machine Learning and Model Combination," NBER Working Papers 20955, National Bureau of Economic Research, Inc.
    3. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    4. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Mayer-Foulkes, 2018. "Efficient Urbanization for Mexican Development," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(10), pages 1-1, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    2. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2018. "Prediction, Judgment, and Complexity: A Theory of Decision-Making and Artificial Intelligence," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 89-110, National Bureau of Economic Research, Inc.
    3. Evgeniy M. Ozhegov & Daria Teterina, 2018. "The Ensemble Method For Censored Demand Prediction," HSE Working papers WP BRP 200/EC/2018, National Research University Higher School of Economics.
    4. Erik Nelson & John Fitzgerald & Nathan Tefft, 2019. "The distributional impact of a green payment policy for organic fruit," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-25, February.
    5. McKenzie, David & Sansone, Dario, 2017. "Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria," CEPR Discussion Papers 12523, C.E.P.R. Discussion Papers.
    6. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    7. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    8. Joyce P Jacobsen & Laurence M Levin & Zachary Tausanovitch, 2016. "Comparing Standard Regression Modeling to Ensemble Modeling: How Data Mining Software Can Improve Economists’ Predictions," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 42(3), pages 387-398, June.
    9. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    10. Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
    11. Francesco Bloise & Paolo Brunori & Patrizio Piraino, 2021. "Estimating intergenerational income mobility on sub-optimal data: a machine learning approach," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(4), pages 643-665, December.
    12. Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
    13. Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022. "Machine learning in the service of policy targeting: The case of public credit guarantees," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
    14. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    15. Krüger, Jens J. & Rhiel, Mathias, 2016. "Determinants of ICT infrastructure: A cross-country statistical analysis," Darmstadt Discussion Papers in Economics 228, Darmstadt University of Technology, Department of Law and Economics.
    16. Achim Ahrens, 2015. "Civil conflicts in Africa: Climate, economic shocks, nighttime lights and spill-over effects," SEEC Discussion Papers 1501, Spatial Economics and Econometrics Centre, Heriot Watt University.
    17. Tatiana de Macedo Nogueira Lima, 2022. "Documento de Trabalho 03/2022 - Aprendizado de máquina e antitruste," Documentos de Trabalho 2022030, Conselho Administrativo de Defesa Econômica (Cade), Departamento de Estudos Econômicos.
    18. Fabio Pammolli & Paolo Bonaretti & Massimo Riccaboni & Valentina Tortolini, 2019. "Quali Regole per la Spesa Farmaceutica? - Criticità, Impatti, Proposte," Working Papers CERM 01-2019, Competitività, Regole, Mercati (CERM).
    19. Braaksma, Barteld & Zeelenberg, Kees, 2015. "“Re-make/Re-model”: Should big data change the modelling paradigm in official statistics?," MPRA Paper 87741, University Library of Munich, Germany.
    20. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Machine Learning Methods for Demand Estimation," American Economic Review, American Economic Association, vol. 105(5), pages 481-485, May.

    More about this item

    Keywords

    Consumer/Household Economics; Demand and Price Analysis;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea16:236147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.