IDEAS home Printed from https://ideas.repec.org/p/ags/aaea14/170277.html
   My bibliography  Save this paper

Integrating Efficiency Concepts in Technology Approximation: A Weighted DEA Approach

Author

Listed:
  • Minegishi, Kota

Abstract

A method is developed to integrate the efficiency concepts of technical, allocative, and scale inefficiencies (TI, AI, SI) into the variable returns to scale (VRS) frontier approximation in Data Envelopment Analysis (DEA). The proposed weighted DEA (WDEA) approach takes a weighted average of the profit, constant returns to scale (CRS), and VRS frontiers, so that the technical feasibility of a VRS frontier is extended toward scale- and allocatively-efficient decisions. A weight selection rule is constructed based on the empirical performance of the VRS estimator via the local confidence interval of Kneip, Simar, and Wilson (2008). The resulting WDEA frontier is consistent and more efficient than the VRS frontier under the maintained properties of a data generating process. The potential estimation efficiency gain arises from exploiting sample correlations among TI, AI, and SI. Application to Maryland dairy production data finds that technical efficiency is on average 5.2% to 7.8% lower under the WDEA results than under the VRS counterparts.

Suggested Citation

  • Minegishi, Kota, 2014. "Integrating Efficiency Concepts in Technology Approximation: A Weighted DEA Approach," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170277, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea14:170277
    DOI: 10.22004/ag.econ.170277
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/170277/files/AAEA_presentation_WDEA.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.170277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Gadh, Vandana M. & Gorr, Wilpen L., 1993. "A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 67(3), pages 332-343, June.
    2. Léopold Simar & Paul Wilson, 2011. "Inference by the m out of n bootstrap in nonparametric frontier models," Journal of Productivity Analysis, Springer, vol. 36(1), pages 33-53, August.
    3. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    4. Kuosmanen, Timo & Cherchye, Laurens & Sipilainen, Timo, 2006. "The law of one price in data envelopment analysis: Restricting weight flexibility across firms," European Journal of Operational Research, Elsevier, vol. 170(3), pages 735-757, May.
    5. Simar, Léopold & Vanhems, Anne & Wilson, Paul W., 2012. "Statistical inference for DEA estimators of directional distances," European Journal of Operational Research, Elsevier, vol. 220(3), pages 853-864.
    6. Schmidt, Peter & Lovell, C. A. Knox, 1980. "Estimating stochastic production and cost frontiers when technical and allocative inefficiency are correlated," Journal of Econometrics, Elsevier, vol. 13(1), pages 83-100, May.
    7. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    8. Victor Podinovski & Emmanuel Thanassoulis, 2007. "Improving discrimination in data envelopment analysis: some practical suggestions," Journal of Productivity Analysis, Springer, vol. 28(1), pages 117-126, October.
    9. Kuosmanen, Timo & Post, Thierry, 2001. "Measuring economic efficiency with incomplete price information: With an application to European commercial banks," European Journal of Operational Research, Elsevier, vol. 134(1), pages 43-58, October.
    10. Khalili, M. & Camanho, A.S. & Portela, M.C.A.S. & Alirezaee, M.R., 2010. "The measurement of relative efficiency using data envelopment analysis with assurance regions that link inputs and outputs," European Journal of Operational Research, Elsevier, vol. 203(3), pages 761-770, June.
    11. Yotopoulos, Pan A & Lau, Lawrence J, 1973. "A Test for Relative Economic Efficiency: Some Further Results," American Economic Review, American Economic Association, vol. 63(1), pages 214-223, March.
    12. Thompson, Russell G. & Langemeier, Larry N. & Lee, Chih-Tah & Lee, Euntaik & Thrall, Robert M., 1990. "The role of multiplier bounds in efficiency analysis with application to Kansas farming," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 93-108.
    13. Robert Chambers & Rolf Färe, 2008. "A “calculus” for data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 30(3), pages 169-175, December.
    14. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    15. E. Thanassoulis & R. Allen, 1998. "Simulating Weights Restrictions in Data Envelopment Analysis by Means of Unobserved DMUs," Management Science, INFORMS, vol. 44(4), pages 586-594, April.
    16. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    17. Kumbhakar, Subal C, 1989. "Estimation of Technical Efficiency Using Flexible Functional Form and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(2), pages 253-258, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    2. Frederic Ang & Pieter Jan Kerstens, 2023. "Robust nonparametric analysis of dynamic profits, prices and productivity: An application to French meat-processing firms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(2), pages 771-809.
    3. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    4. Victor V. Podinovski & Wan Rohaida Wan Husain, 2017. "The hybrid returns-to-scale model and its extension by production trade-offs: an application to the efficiency assessment of public universities in Malaysia," Annals of Operations Research, Springer, vol. 250(1), pages 65-84, March.
    5. Thanassoulis, Emmanuel & Kortelainen, Mika & Allen, Rachel, 2012. "Improving envelopment in Data Envelopment Analysis under variable returns to scale," European Journal of Operational Research, Elsevier, vol. 218(1), pages 175-185.
    6. Baris Yilmaz & Mehmet Yurdusev & Nilgun Harmancioglu, 2009. "The Assessment of Irrigation Efficiency in Buyuk Menderes Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1081-1095, April.
    7. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    8. Pereira, Miguel Alves & Camanho, Ana Santos & Figueira, José Rui & Marques, Rui Cunha, 2021. "Incorporating preference information in a range directional composite indicator: The case of Portuguese public hospitals," European Journal of Operational Research, Elsevier, vol. 294(2), pages 633-650.
    9. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    10. Aldanondo, Ana M. & Casasnovas, Valero L., 2015. "More is better than one: the impact of different numbers of input aggregators in technical efficiency estimation," MPRA Paper 64120, University Library of Munich, Germany.
    11. Blancard, Stéphane & Martin, Elsa, 2014. "Energy efficiency measurement in agriculture with imprecise energy content information," Energy Policy, Elsevier, vol. 66(C), pages 198-208.
    12. William W. Cooper & Kyung Sam Park & Gang Yu, 2001. "An Illustrative Application of Idea (Imprecise Data Envelopment Analysis) to a Korean Mobile Telecommunication Company," Operations Research, INFORMS, vol. 49(6), pages 807-820, December.
    13. Ströhl, Florian & Borsch, Erik & Souren, Rainer, 2018. "Integration von Gewichtsrestriktionen in das DEA-Modell nach Charnes, Cooper und Rhodes: Exemplarische Optionen und Auswirkungen," Ilmenauer Schriften zur Betriebswirtschaftslehre, Technische Universität Ilmenau, Institut für Betriebswirtschaftslehre, volume 3, number 32018.
    14. V V Podinovski, 2004. "Production trade-offs and weight restrictions in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1311-1322, December.
    15. HOSSEINZADEH LOTFI, Farhad & HATAMI-MARBINI, Adel & AGRELL, Per & GHOLAMI, Kobra, 2013. "Centralized resource reduction and target setting under DEA control," LIDAM Discussion Papers CORE 2013005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Minegishi, Kota, 2013. "Explaining Production Heterogeneity By Contextual Environments: Two-Stage DEA Application to Technical Change Measurement," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150289, Agricultural and Applied Economics Association.
    17. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    18. Podinovski, Victor V., 2016. "Optimal weights in DEA models with weight restrictions," European Journal of Operational Research, Elsevier, vol. 254(3), pages 916-924.
    19. Ghasemi, M.-R. & Ignatius, Joshua & Emrouznejad, Ali, 2014. "A bi-objective weighted model for improving the discrimination power in MCDEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 640-650.
    20. Simar, Léopold & W. Wilson, Paul, 2019. "Central limit theorems and inference for sources of productivity change measured by nonparametric Malmquist indices," European Journal of Operational Research, Elsevier, vol. 277(2), pages 756-769.

    More about this item

    Keywords

    Livestock Production/Industries; Production Economics; Productivity Analysis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea14:170277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.