IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i6p1081-1095.html
   My bibliography  Save this article

The Assessment of Irrigation Efficiency in Buyuk Menderes Basin

Author

Listed:
  • Baris Yilmaz
  • Mehmet Yurdusev
  • Nilgun Harmancioglu

Abstract

While extending irrigated areas to augment agricultural production, irrigation efficiency should be increased not only to improve the agricultural production but also to obtain the sustainable use of valuable and limited water resources. Through the use of Data Envelopment Analysis (DEA), which is a linear programming technique to determine the relative efficiency of a decision-making unit, it is possible to decide whether the use of water in an irrigation district is efficient or not. In this study, an input oriented DEA model is constituted to focus on the efficient use of inputs, and the method is applied to the irrigation districts having similar types of agriculture in the Buyuk Menderes Basin, Turkey. This paper aims to determine the efficient irrigation district(s), in other words where the application of water is the most profitable, considering two inputs; water volume supplied and the total irrigated area, and one output, the total value of agricultural production. The weight restrictions consistent with decision makers’ value judgements are added as constraints into the DEA models to prevent excessive weight flexibility assigned to inputs and outputs. The results have provided the efficiency scores of the irrigation districts and numerically delineated desired features of the irrigation districts for maximum efficiency. The analyses for three study years have inferred the robustness of the results. It is concluded that DEA is a practical tool for detecting local inefficiencies and proposing possible improvements for irrigation districts that could offer the greatest potential for growth. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Baris Yilmaz & Mehmet Yurdusev & Nilgun Harmancioglu, 2009. "The Assessment of Irrigation Efficiency in Buyuk Menderes Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1081-1095, April.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:6:p:1081-1095
    DOI: 10.1007/s11269-008-9316-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9316-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9316-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Raju & D. Kumar, 2006. "Ranking Irrigation Planning Alternatives Using Data Envelopment Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(4), pages 553-566, August.
    2. Thanassoulis, Emmanuel, 2000. "DEA and its use in the regulation of water companies," European Journal of Operational Research, Elsevier, vol. 127(1), pages 1-13, November.
    3. Charnes, A. & Cooper, W. W. & Huang, Z. M. & Sun, D. B., 1990. "Polyhedral Cone-Ratio DEA Models with an illustrative application to large commercial banks," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 73-91.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    6. Li, Xiao-Bai & Reeves, Gary R., 1999. "A multiple criteria approach to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 115(3), pages 507-517, June.
    7. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    8. Thompson, Russell G. & Langemeier, Larry N. & Lee, Chih-Tah & Lee, Euntaik & Thrall, Robert M., 1990. "The role of multiplier bounds in efficiency analysis with application to Kansas farming," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 93-108.
    9. Sarkis, Joseph, 2000. "A comparative analysis of DEA as a discrete alternative multiple criteria decision tool," European Journal of Operational Research, Elsevier, vol. 123(3), pages 543-557, June.
    10. E. Thanassoulis & R. Allen, 1998. "Simulating Weights Restrictions in Data Envelopment Analysis by Means of Unobserved DMUs," Management Science, INFORMS, vol. 44(4), pages 586-594, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Gómez & C. Pérez-Blanco, 2014. "Simple Myths and Basic Maths About Greening Irrigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4035-4044, September.
    2. Yuyu Liu & Caizhi Sun & Shiguo Xu, 2013. "Eco-Efficiency Assessment of Water Systems in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4927-4939, November.
    3. Md Ali & K. Klein, 2014. "Water Use Efficiency and Productivity of the Irrigation Districts in Southern Alberta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2751-2766, August.
    4. Pengnan Xiao & Jie Xu & Zupeng Yu & Peng Qian & Mengyao Lu & Chao Ma, 2022. "Spatiotemporal Pattern Differentiation and Influencing Factors of Cultivated Land Use Efficiency in Hubei Province under Carbon Emission Constraints," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    5. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    6. Jing Liu & Yu Zhang & Zhongbo Yu, 2018. "Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China," Sustainability, MDPI, vol. 10(11), pages 1-10, November.
    7. Ke-Liang Wang & Jianguo Wang & Jianming Wang & Lili Ding & Mingsong Zhao & Qunwei Wang, 2020. "Investigating the spatiotemporal differences and influencing factors of green water use efficiency of Yangtze River Economic Belt in China," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-24, April.
    8. Leon Hermans, 2011. "An Approach to Support Learning from International Experience with Water Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 373-393, January.
    9. S. Wolfe, 2012. "Water Cognition and Cognitive Affective Mapping: Identifying Priority Clusters Within a Canadian Water Efficiency Community," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2991-3004, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jian-Bo & Wong, Brandon Y.H. & Xu, Dong-Ling & Stewart, Theodor J., 2009. "Integrating DEA-oriented performance assessment and target setting using interactive MOLP methods," European Journal of Operational Research, Elsevier, vol. 195(1), pages 205-222, May.
    2. Ghasemi, M.-R. & Ignatius, Joshua & Emrouznejad, Ali, 2014. "A bi-objective weighted model for improving the discrimination power in MCDEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 640-650.
    3. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    4. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    5. Finn Førsund, 2013. "Weight restrictions in DEA: misplaced emphasis?," Journal of Productivity Analysis, Springer, vol. 40(3), pages 271-283, December.
    6. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    7. William W. Cooper & Kyung Sam Park & Gang Yu, 2001. "An Illustrative Application of Idea (Imprecise Data Envelopment Analysis) to a Korean Mobile Telecommunication Company," Operations Research, INFORMS, vol. 49(6), pages 807-820, December.
    8. V V Podinovski, 2004. "Production trade-offs and weight restrictions in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1311-1322, December.
    9. HOSSEINZADEH LOTFI, Farhad & HATAMI-MARBINI, Adel & AGRELL, Per & GHOLAMI, Kobra, 2013. "Centralized resource reduction and target setting under DEA control," LIDAM Discussion Papers CORE 2013005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "A multiplier bound approach to assess relative efficiency in DEA without slacks," European Journal of Operational Research, Elsevier, vol. 203(1), pages 261-269, May.
    11. Estellita Lins, M.P. & Moreira da Silva, A.C. & Lovell, C.A.K., 2007. "Avoiding infeasibility in DEA models with weight restrictions," European Journal of Operational Research, Elsevier, vol. 181(2), pages 956-966, September.
    12. Vladimir Krivonozhko & Finn Førsund & Andrey Lychev, 2015. "Terminal units in DEA: definition and determination," Journal of Productivity Analysis, Springer, vol. 43(2), pages 151-164, April.
    13. Ebrahimi, Bohlool & Dhamotharan, Lalitha & Ghasemi, Mohammad Reza & Charles, Vincent, 2022. "A cross-inefficiency approach based on the deviation variables framework," Omega, Elsevier, vol. 111(C).
    14. Halme, Merja & Korhonen, Pekka, 2000. "Restricting weights in value efficiency analysis," European Journal of Operational Research, Elsevier, vol. 126(1), pages 175-188, October.
    15. T. Joro & E-J. Viitala, 1999. "The Efficiency of Public Forestry Organizations: A Comparison of Different Weight Restriction Approaches," Working Papers ir99059, International Institute for Applied Systems Analysis.
    16. Amy H. I. Lee & He-Yau Kang & Chun-Yu Lin & Kuan-Chin Shen, 2015. "An Integrated Decision-Making Model for the Location of a PV Solar Plant," Sustainability, MDPI, vol. 7(10), pages 1-20, September.
    17. Pereira de Souza, Marcus Vinicius & Souza, Reinaldo C. & Pessanha, José Francisco M. & da Costa Oliveira, Carlos Henrique & Diallo, Madiagne, 2014. "An application of data envelopment analysis to evaluate the efficiency level of the operational cost of Brazilian electricity distribution utilities," Socio-Economic Planning Sciences, Elsevier, vol. 48(3), pages 169-174.
    18. Maria Portela & Emmanuel Thanassoulis, 2006. "Zero weights and non-zero slacks: Different solutions to the same problem," Annals of Operations Research, Springer, vol. 145(1), pages 129-147, July.
    19. Allen, R. & Thanassoulis, E., 2004. "Improving envelopment in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 363-379, April.
    20. Lins, Marcos Pereira Estellita & Sollero, Maria Karla Vervloet & Caloba, Guilherme Marques & da Silva, Angela Cristina Moreira, 2007. "Integrating the regulatory and utility firm perspectives, when measuring the efficiency of electricity distribution," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1413-1424, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:6:p:1081-1095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.