IDEAS home Printed from https://ideas.repec.org/p/ags/aaea02/19706.html
   My bibliography  Save this paper

Conditional Forecasting For The U.S. Dairy Price Complex With A Bayesian Vector Autoregressive Model

Author

Listed:
  • Thraen, Cameron S.
  • Thompson, Stanley R.
  • Gohout, Wolfgang

Abstract

A dynamic Bayesian Vector Autoregressive model of the U.S. dairy price complex is estimated based on the Normal-Wishart distribution. The Gibbs sample technique is use with the Normal-Wishart distribution to provide conditional forecasts on the future time-paths of the model variables. The conditional forecasts for key prices are examined. Confidence intervals are calculated for the conditional forecasts.

Suggested Citation

  • Thraen, Cameron S. & Thompson, Stanley R. & Gohout, Wolfgang, 2002. "Conditional Forecasting For The U.S. Dairy Price Complex With A Bayesian Vector Autoregressive Model," 2002 Annual meeting, July 28-31, Long Beach, CA 19706, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea02:19706
    DOI: 10.22004/ag.econ.19706
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/19706/files/sp02th03.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.19706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Konecny & Oxana Babecka-Kucharcukova, 2016. "Credit Spreads and the Links between the Financial and Real Sectors in a Small Open Economy: The Case of the Czech Republic," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 302-321, August.
    2. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2020. "Efficient selection of hyperparameters in large Bayesian VARs using automatic differentiation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 934-943, September.
    3. Gianluca Cubadda & Alain Hecq, 2021. "Reduced Rank Regression Models in Economics and Finance," CEIS Research Paper 525, Tor Vergata University, CEIS, revised 08 Nov 2021.
    4. Michal Franta, 2012. "Macroeconomic Effects of Fiscal Policy in the Czech Republic: Evidence Based on Various Identification Approaches in a VAR Framework," Working Papers 2012/13, Czech National Bank.
    5. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    6. Salzmann, Leonard, 2020. "The Impact of Uncertainty and Financial Shocks in Recessions and Booms," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224588, Verein für Socialpolitik / German Economic Association.
    7. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    8. Lewis N.K. Mambo, 2024. "From Multidimensional Ornstein - Uhlenbeck Process to Bayesian Vector Autoregressive Process," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 15(1), pages 1-32, December.
    9. Elena Afanasyeva & Jochen Güntner, 2014. "Lending Standards, Credit Booms and Monetary Policy," Economics working papers 2014-11, Department of Economics, Johannes Kepler University Linz, Austria.
    10. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    11. Salzmann, Leonard, 2024. "Do Survey Data Help Identify Supply and Demand Shocks in Sign-restricted SVARs?," EconStor Preprints 289576, ZBW - Leibniz Information Centre for Economics.
    12. Dimitris Korobilis, 2008. "Forecasting in vector autoregressions with many predictors," Advances in Econometrics, in: Bayesian Econometrics, pages 403-431, Emerald Group Publishing Limited.
    13. Rubaszek, Michał, 2021. "Forecasting crude oil prices with DSGE models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 531-546.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    15. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2011. "Forecasting large datasets with Bayesian reduced rank multivariate models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 735-761, August.
    16. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
    17. John M. Maheu & Yong Song, 2018. "An efficient Bayesian approach to multiple structural change in multivariate time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(2), pages 251-270, March.
    18. Niko Hauzenberger & Florian Huber & Luca Onorante, 2021. "Combining shrinkage and sparsity in conjugate vector autoregressive models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 304-327, April.
    19. Andrea Carriero, 2011. "Forecasting The Yield Curve Using Priors From No‐Arbitrage Affine Term Structure Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(2), pages 425-459, May.
    20. Balcilar, Mehmet & Katzke, Nico & Gupta, Rangan, 2017. "Do precious metal prices help in forecasting South African inflation?," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 63-72.

    More about this item

    Keywords

    Demand and Price Analysis;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea02:19706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.