IDEAS home Printed from https://ideas.repec.org/p/ags/aaea01/20446.html
   My bibliography  Save this paper

Dynamics Of Agricultural Groundwater Extraction

Author

Listed:
  • Hellegers, Petra J.G.J.
  • Zilberman, David
  • van Ierland, Ekko C.

Abstract

Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

Suggested Citation

  • Hellegers, Petra J.G.J. & Zilberman, David & van Ierland, Ekko C., 2001. "Dynamics Of Agricultural Groundwater Extraction," 2001 Annual meeting, August 5-8, Chicago, IL 20446, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea01:20446
    DOI: 10.22004/ag.econ.20446
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/20446/files/sp01he03.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.20446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bystrom, Olof, 1998. "The nitrogen abatement cost in wetlands," Ecological Economics, Elsevier, vol. 26(3), pages 321-331, September.
    2. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    3. Farhed A. Shah & David Zilberman & Ujjayant Chakravorty, 1995. "Technology Adoption in the Presence of an Exhaustible Resource: The Case of Groundwater Extraction," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 291-299.
    4. Carlson, Gerald A. & Zilberman, David & Miranowski, John, 1993. "Agricultural and Resource Economics," Staff General Research Papers Archive 11104, Iowa State University, Department of Economics.
    5. Fleming, R. A. & Adams, R. M., 1997. "The Importance of Site-Specific Information in the Design of Policies to Control Pollution," Journal of Environmental Economics and Management, Elsevier, vol. 33(3), pages 347-358, July.
    6. Jeroen C.J.M. van den Bergh (ed.), 1999. "Handbook of Environmental and Resource Economics," Books, Edward Elgar Publishing, number 801.
    7. Douglas M. Larson & Gloria E. Helfand & Brett W. House, 1996. "Second-Best Tax Policies to Reduce Nonpoint Source Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1108-1117.
    8. Wichelns, Dennis, 1999. "An economic model of waterlogging and salinization in arid regions," Ecological Economics, Elsevier, vol. 30(3), pages 475-491, September.
    9. Margriet Caswell & David Zilberman, 1985. "The Choices of Irrigation Technologies in California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 224-234.
    10. Giannias, Dimitrios A. & Lekakis, Joseph N., 1997. "Policy analysis for an amicable, efficient and sustainable inter-country fresh water resource allocation," Ecological Economics, Elsevier, vol. 21(3), pages 231-242, June.
    11. David Zilberman & Neal Macdougall & Farhed Shah, 1994. "Changes In Water Allocation Mechanisms For California Agriculture," Contemporary Economic Policy, Western Economic Association International, vol. 12(1), pages 122-133, January.
    12. Provencher Bill & Burt Oscar, 1993. "The Externalities Associated with the Common Property Exploitation of Groundwater," Journal of Environmental Economics and Management, Elsevier, vol. 24(2), pages 139-158, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ami Reznik & Ariel Dinar & Francesc Hernández-Sancho, 2019. "Treated Wastewater Reuse: An Efficient and Sustainable Solution for Water Resource Scarcity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(4), pages 1647-1685, December.
    2. Lars Gårn Hansen & Frank Jensen & Eirik S. Amundsen, 2014. "Regulating Groundwater Use in Developing Countries: A Feasible Instrument for Public Intervention," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 170(2), pages 317-335, June.
    3. Danling Chen & Wenbo Hu, 2023. "Temporal and Spatial Effects of Heavy Metal-Contaminated Cultivated Land Treatment on Agricultural Development Resilience," Land, MDPI, vol. 12(5), pages 1-16, April.
    4. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke, 2017. "Social welfare losses from groundwater over-extraction for small-scale agriculture in Sri Lanka: Environmental concern for land use," Journal of Forest Economics, Elsevier, vol. 29(PA), pages 47-55.
    5. Cheesman, Jeremy & Bennett, Jeffrey W., 2006. "An integrated approach for modelling the impacts of land and water resource use in the Dak Lak plateau, Viet Nam," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 174460, Australian Agricultural and Resource Economics Society.
    6. Shaheen, F.A. & Shiyani, R.L., 2006. "Energy Costs and Groundwater Withdrawals: Results from an Optimal Control Model for North Gujarat," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 62(01), pages 1-16.
    7. Majah-Leah V. Ravago & James A. Roumasset, 2015. "Rethinking Baselines: An Efficiency-based Approash to Better REDD+ Governance," Working Papers 201515, University of Hawaii at Manoa, Department of Economics.
    8. Chant, Lindsay & McDonald, Scott & Verschoor, Arjan, 2004. "The Role of the 1994-95 Coffee Boom in Uganda's Recovery," Conference papers 331235, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Shiferaw, Bekele & Reddy, V. Ratna & Wani, Suhas P., 2008. "Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: The effect of alternative water pricing policies," Ecological Economics, Elsevier, vol. 67(2), pages 327-340, September.
    10. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
    11. Kiran Krishnamurthy, Chandra, 2012. "Optimal Management of Groundwater under Uncertainty: A Unified Approach," CERE Working Papers 2012:19, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    12. Woonghee Tim Huh & Chandra Kiran Krishnamurthy & Richard Weber, 2011. "Concavity and monotonicity properties in a groundwater management model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(7), pages 670-675, October.
    13. repec:ags:aare05:139314 is not listed on IDEAS
    14. Berbel, J. & Calatrava, J. & Garrido. A., 2007. "Water pricing and irrigation: a review of the European experience," IWMI Books, Reports H040611, International Water Management Institute.
    15. Esteban, Encarna & Albiac, José, 2011. "Groundwater and ecosystems damages: Questioning the Gisser-Sánchez effect," Ecological Economics, Elsevier, vol. 70(11), pages 2062-2069, September.
    16. Chandra Kiran B. Krishnamurthy, 2017. "Optimal Management of Groundwater Under Uncertainty: A Unified Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 351-377, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    2. Alain Ayong Le Kama & Agnès Tomini, 2012. "Water Conservation versus Soil Salinity Control," Working Papers hal-04141151, HAL.
    3. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke, 2017. "Social welfare losses from groundwater over-extraction for small-scale agriculture in Sri Lanka: Environmental concern for land use," Journal of Forest Economics, Elsevier, vol. 29(PA), pages 47-55.
    4. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    5. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    6. Brady, Mark, 2003. "The relative cost-efficiency of arable nitrogen management in Sweden," Ecological Economics, Elsevier, vol. 47(1), pages 53-70, November.
    7. Carlos A. Ulibarri & Harry S. Seely & David B. Willis, 1998. "Farm Profitability And Burec Water Subsidies: An Lp Look At A Region," Contemporary Economic Policy, Western Economic Association International, vol. 16(4), pages 442-451, October.
    8. Burness, H. Stuart & Brill, Thomas C., 2001. "The role for policy in common pool groundwater use," Resource and Energy Economics, Elsevier, vol. 23(1), pages 19-40, January.
    9. Umetsu, Chieko & Chakravorty, Ujjayant, 1998. "Water conveyance, return flows and technology choice," Agricultural Economics, Blackwell, vol. 19(1-2), pages 181-191, September.
    10. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    11. Umetsu, Chieko, 2002. "The Optimal Dynamic Model of Conjunctive Water Use," Japanese Journal of Agricultural Economics (formerly Japanese Journal of Rural Economics), Agricultural Economics Society of Japan (AESJ), vol. 4.
    12. Qiu, Zeyuan & Prato, Anthony A., 1999. "Accounting For Spatial Characteristics Of Watersheds In Evaluating Water Pollution Abatement Policies," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 31(01), pages 1-15, April.
    13. Chatterjee, Diti & Dinar, Ariel & González-Rivera, Gloria, 2019. "Impact of Agricultural Extension on Irrigated Agriculture Production and Water Use in California," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2019.
    14. Eric C. Edwards, 2016. "What Lies Beneath? Aquifer Heterogeneity and the Economics of Groundwater Management," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 453-491.
    15. Eiji Satoh, 2011. "Nontransferable Water Rights and Technical Inefficiency in the Japanese Water Supply Industry," Global COE Hi-Stat Discussion Paper Series gd11-211, Institute of Economic Research, Hitotsubashi University.
    16. Uri Shani & Yacov Tsur & Amos Zemel & David Zilberman, 2009. "Irrigation production functions with water‐capital substitution," Agricultural Economics, International Association of Agricultural Economists, vol. 40(1), pages 55-66, January.
    17. Escribano, Maria Jesus & Calatrava-Leyva, Javier, 2005. "Analysis of the Adoption of Irrigation Technologies Under Uncertain Water Availability," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24672, European Association of Agricultural Economists.
    18. JunJie Wu & Richard M. Adams & Catherine L. Kling & Katsuya Tanaka, 2004. "From Microlevel Decisions to Landscape Changes: An Assessment of Agricultural Conservation Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 26-41.
    19. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    20. Rui Manuel de Sousa Fragoso & Carlos Alberto Falcão Marques, 2013. "The Economic Impact of Alternative Water Pricing Policies in Alentejo Region," CEFAGE-UE Working Papers 2013_02, University of Evora, CEFAGE-UE (Portugal).

    More about this item

    Keywords

    Resource/Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea01:20446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.