IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/209217.html
   My bibliography  Save this book chapter

A Risk Management Approach for the Pre-Series Logistics in Production Ramp-Up

In: Next Generation Supply Chains: Trends and Opportunities. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 18

Author

Listed:
  • Filla, Patrick
  • Klingebiel, Katja

Abstract

Due to continuing derivatisation and increasing customer requirements, automotive development projects constantly become more complex. With a shortening time-to-market, the critical ramp-up phase of a new or updated automobile is susceptible to a variety of disruptions. As the project duration is naturally restricted, a high number of unscheduled ad-hoc resources are regularly installed to achieve the previously set qualitative targets within the given time limits. For early risk mitigation, current approaches in research and industry focus on the measurement of either technical product degrees or process maturity degrees in the development process. Nevertheless, it is clearly understood, that pre-series logistics bridge both viewpoints and thus still hold significant potential to reduce project risks. Consequentially, this paper presents a methodology that assesses the risk of process-wise and quality-wise delays. After discussing the specific risk profiles within logistics processes in the automotive ramp-up phase, the application of purpose-designed product maturity degree indicators and structured knowledge from historical projects is illustrated. The developed approach enables to identify critical processes in the production readiness process. The paper concludes with a summary and an outlook on further research.

Suggested Citation

  • Filla, Patrick & Klingebiel, Katja, 2014. "A Risk Management Approach for the Pre-Series Logistics in Production Ramp-Up," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Next Generation Supply Chains: Trends and Opportunities. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 18, volume 18, pages 407-422, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:209217
    DOI: 10.15480/882.1188
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/209217/1/hicl-2014-18-407.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.1188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Terwiesch, Christian & E. Bohn, Roger, 2001. "Learning and process improvement during production ramp-up," International Journal of Production Economics, Elsevier, vol. 70(1), pages 1-19, March.
    2. Pfohl, Hans-Christian & Gareis, K., 2000. "Die Rolle der Logistik in der Anlaufphase," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 14372, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Doltsinis, Stefanos C. & Ratchev, Svetan & Lohse, Niels, 2013. "A framework for performance measurement during production ramp-up of assembly stations," European Journal of Operational Research, Elsevier, vol. 229(1), pages 85-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agathe Gilain & Pascal Le Masson & Benoit Weil, 2018. "Managing Learning Curves In The Unknown: From ‘Learning By Doing’ To ‘Learning By Designing’," Post-Print hal-01900961, HAL.
    2. S. Göttlich & S. Kühn & J. A. Schwarz & R. Stolletz, 2016. "Approximations of time-dependent unreliable flow lines with finite buffers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 295-323, June.
    3. Morgan, Horatio M. & Ngwenyama, Ojelanki, 2015. "Real options, learning cost and timing software upgrades: Towards an integrative model for enterprise software upgrade decision analysis," International Journal of Production Economics, Elsevier, vol. 168(C), pages 211-223.
    4. Jaber, Mohamad Y. & Sikstrom, Sverker, 2004. "A numerical comparison of three potential learning and forgetting models," International Journal of Production Economics, Elsevier, vol. 92(3), pages 281-294, December.
    5. Shin, Jang-Sup, 2017. "Dynamic catch-up strategy, capability expansion and changing windows of opportunity in the memory industry," Research Policy, Elsevier, vol. 46(2), pages 404-416.
    6. Nadeau, Marie-Claude & Kar, Ashish & Roth, Richard & Kirchain, Randolph, 2010. "A dynamic process-based cost modeling approach to understand learning effects in manufacturing," International Journal of Production Economics, Elsevier, vol. 128(1), pages 223-234, November.
    7. Goudarzi, Fatemeh (Sahar) & Olaru, Doina & Bergey, Paul, 2023. "Beyond risk attitude: Unpacking behavioral drivers of supply chain contracts," International Journal of Production Economics, Elsevier, vol. 255(C).
    8. Negahban, Ashkan & Dehghanimohammadabadi, Mohammad, 2018. "Optimizing the supply chain configuration and production-sales policies for new products over multiple planning horizons," International Journal of Production Economics, Elsevier, vol. 196(C), pages 150-162.
    9. Ying-Ju Chen & Brian Tomlin & Yimin Wang, 2017. "Dual Coproduct Technologies: Implications for Process Development and Adoption," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 692-712, October.
    10. Annika Becker & Raik Stolletz & Thomas Stäblein, 2017. "Strategic ramp-up planning in automotive production networks," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 59-78, January.
    11. John V. Gray & Enno Siemsen & Gurneeta Vasudeva, 2015. "Colocation Still Matters: Conformance Quality and the Interdependence of R&D and Manufacturing in the Pharmaceutical Industry," Management Science, INFORMS, vol. 61(11), pages 2760-2781, November.
    12. Huidong Zhang & Dragan Djurdjanovic, 2022. "Integrated production and maintenance planning under uncertain demand with concurrent learning of yield rate," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 429-450, June.
    13. Lenfle, Sylvain & Midler, Christophe, 2009. "The launch of innovative product-related services: Lessons from automotive telematics," Research Policy, Elsevier, vol. 38(1), pages 156-169, February.
    14. Demeester, Lieven L. & Qi, Mei, 2005. "Managing learning resources for consecutive product generations," International Journal of Production Economics, Elsevier, vol. 95(2), pages 265-283, February.
    15. Herwig Winkler & Michael Slamanig, 2008. "Konzeption eines aktivitätsorientierten Instruments zur Anlaufkostenplanung," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 19(1), pages 85-106, May.
    16. Carrillo, Janice E. & Franza, Richard M., 2006. "Investing in product development and production capabilities: The crucial linkage between time-to-market and ramp-up time," European Journal of Operational Research, Elsevier, vol. 171(2), pages 536-556, June.
    17. Zadourian, Rubina & Klümper, Andreas, 2018. "Exact probability distribution function for the volatility of cumulative production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 59-66.
    18. Jaber, Mohamad Y. & Khan, Mehmood, 2010. "Managing yield by lot splitting in a serial production line with learning, rework and scrap," International Journal of Production Economics, Elsevier, vol. 124(1), pages 32-39, March.
    19. Ngwenyama, Ojelanki & Guergachi, Aziz & McLaren, Tim, 2007. "Using the learning curve to maximize IT productivity: A decision analysis model for timing software upgrades," International Journal of Production Economics, Elsevier, vol. 105(2), pages 524-535, February.
    20. Anandasivam Gopal & Manu Goyal & Serguei Netessine & Matthew Reindorp, 2013. "The Impact of New Product Introduction on Plant Productivity in the North American Automotive Industry," Management Science, INFORMS, vol. 59(10), pages 2217-2236, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:209217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.