IDEAS home Printed from https://ideas.repec.org/h/wsi/wschap/9789812810663_0007.html
   My bibliography  Save this book chapter

Reconstructing The Unknown Local Volatility Function

In: Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II)

Author

Listed:
  • THOMAS F. COLEMAN

    (Computer Science Department and Cornell Theory Center, Cornell University, Ithaca, NY 14850, USA)

  • YUYING LI

    (Computer Science Department and Cornell Theory Center, Cornell University, Ithaca, NY 14850, USA)

  • ARUN VERMA

    (Computer Science Department and Cornell Theory Center, Cornell University, Ithaca, NY 14850, USA)

Abstract

Using market European option prices, a method for computing a smooth local volatility function in a 1-factor continuous diffusion model is proposed. Smoothness is introduced to facilitate accurate approximation of the local volatility function from a finite set of observation data. Assuming that the underlying indeed follows a 1-factor model, it is emphasized that accurately approximating the local volatility function prescribing the 1-factor model is crucial in hedging even simple European options, and pricing exotic options. A spline functional approach is used: the local volatility function is represented by a spline whose values at chosen knots are determined by solving a constrained nonlinear optimization problem. The optimization formulation is amenable to various option evaluation methods; a partial differential equation implementation is discussed. Using a synthetic European call option example, we illustrate the capability of the proposed method in reconstructing the unknown local volatility function. Accuracy of pricing and hedging is also illustrated. Moreover, it is demonstrated that, using different implied volatilities for options with different strikes/maturities can produce erroneous hedge factors if the underlying follows a 1-factor model. In addition, real market European call option data on the S&P 500 stock index is used to compute the local volatility function; stability of the approach is demonstrated.

Suggested Citation

  • Thomas F. Coleman & Yuying Li & Arun Verma, 2001. "Reconstructing The Unknown Local Volatility Function," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 7, pages 192-215, World Scientific Publishing Co. Pte. Ltd..
  • Handle: RePEc:wsi:wschap:9789812810663_0007
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/pdf/10.1142/9789812810663_0007
    Download Restriction: Ebook Access is available upon purchase.

    File URL: https://www.worldscientific.com/doi/abs/10.1142/9789812810663_0007
    Download Restriction: Ebook Access is available upon purchase.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2023. "Data-driven Approach for Static Hedging of Exchange Traded Options," Papers 2302.00728, arXiv.org, revised Jan 2024.
    2. Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).
    3. Gabriel TURINICI, 2008. "Local Volatility Calibration Using An Adjoint Proxy," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 2, pages 93-105, November.
    4. Gabriel Turinici, 2009. "Calibration of local volatility using the local and implied instantaneous variance," Post-Print hal-00338114, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9789812810663_0007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.