IDEAS home Printed from https://ideas.repec.org/a/aic/revebs/y2008i2turinicig.html
   My bibliography  Save this article

Local Volatility Calibration Using An Adjoint Proxy

Author

Listed:
  • Gabriel TURINICI

    (CEREMADE, Université Paris Dauphine)

Abstract

We document the calibration of the local volatility in a framework similar to Coleman, Li and Verma. The quality of a surface is assessed through a functional to be optimized; the specificity of the approach is to separate the optimization (performed with any suitable optimization algorithm) from the computation of the functional where we use an adjoint (as in L. Jiang et. al.) to obtain an approximation; moreover our main calibration variable is the implied volatility (the procedure can also accommodate the Greeks). The procedure performs well on benchmarks from the literature and on FOREX data.

Suggested Citation

  • Gabriel TURINICI, 2008. "Local Volatility Calibration Using An Adjoint Proxy," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 2, pages 93-105, November.
  • Handle: RePEc:aic:revebs:y:2008:i:2:turinicig
    as

    Download full text from publisher

    File URL: http://rebs.ro/resource/REBS_2/Research%20Paper/Turinici_G_-_Local_volatility_calibration_using_an_adjoint_proxy.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
    2. Marco Avellaneda & Craig Friedman & Richard Holmes & Dominick Samperi, 1997. "Calibrating volatility surfaces via relative-entropy minimization," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(1), pages 37-64.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Thomas F. Coleman & Yuying Li & Arun Verma, 2001. "Reconstructing The Unknown Local Volatility Function," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 7, pages 192-215, World Scientific Publishing Co. Pte. Ltd..
    5. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    6. Ronald Lagnado & Stanley Osher, "undated". "A Technique for Calibrating Derivative Security Pricing Models: Numerical Solution of an Inverse Problem," Computing in Economics and Finance 1997 101, Society for Computational Economics.
    7. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    8. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    9. Lishang Jiang & Qihong Chen & Lijun Wang & Jin Zhang, 2003. "A new well-posed algorithm to recover implied local volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 451-457.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Turinici, 2009. "Robust recovery of the risk neutral probability density from option prices," Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi - Stiinte Economice (1954-2015), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 56, pages 197-201, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Min & Tang, Ling & Yue, Xingye, 2016. "Calibration of stochastic volatility models: A Tikhonov regularization approach," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 66-81.
    2. David Heath & Eckhard Platen, 2006. "Local volatility function models under a benchmark approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 197-206.
    3. Lishang Jiang & Qihong Chen & Lijun Wang & Jin Zhang, 2003. "A new well-posed algorithm to recover implied local volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 451-457.
    4. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    5. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    6. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Joe Akira Yoshino, 2003. "Market Risk and Volatility in the Brazilian Stock Market," Journal of Applied Economics, Universidad del CEMA, vol. 6, pages 385-403, November.
    9. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    10. Ghaffari, Reza & Venkatesh, Bala, 2015. "Network constrained model for options based reserve procurement by wind generators using binomial tree," Renewable Energy, Elsevier, vol. 80(C), pages 348-358.
    11. Henryk Gzyl & German Molina & Enrique ter Horst, 2009. "Assessment and propagation of input uncertainty in tree‐based option pricing models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 275-308, May.
    12. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    13. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    14. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    15. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    16. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    17. Christian Wolff & Thorsten Lehnert & Cokki Versluis, 2009. "A Cumulative Prospect Theory Approach to Option Pricing," LSF Research Working Paper Series 09-03, Luxembourg School of Finance, University of Luxembourg.
    18. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.
    19. Bossaerts, P.L.M. & Hillion, P., 1995. "Local Parametric Analysis of Hedging in Discrete Time," Discussion Paper 1995-23, Tilburg University, Center for Economic Research.
    20. Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aic:revebs:y:2008:i:2:turinicig. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sireteanu Napoleon-Alexandru (email available below). General contact details of provider: https://edirc.repec.org/data/feaicro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.