Prognostics and Health Management
In: Risk-Based Engineering
Author
Abstract
Suggested Citation
DOI: 10.1007/978-981-13-0090-5_13
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
- Liu, Junqiang & Lei, Fan & Pan, Chunlu & Hu, Dongbin & Zuo, Hongfu, 2021. "Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Theissler, Andreas & Pérez-Velázquez, Judith & Kettelgerdes, Marcel & Elger, Gordon, 2021. "Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Luca Pinciroli & Piero Baraldi & Guido Ballabio & Michele Compare & Enrico Zio, 2021. "Deep Reinforcement Learning Based on Proximal Policy Optimization for the Maintenance of a Wind Farm with Multiple Crews," Energies, MDPI, vol. 14(20), pages 1-17, October.
- Hundi, Prabhas & Shahsavari, Rouzbeh, 2020. "Comparative studies among machine learning models for performance estimation and health monitoring of thermal power plants," Applied Energy, Elsevier, vol. 265(C).
- Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Mathieu Payette & Georges Abdul-Nour, 2023. "Machine Learning Applications for Reliability Engineering: A Review," Sustainability, MDPI, vol. 15(7), pages 1-22, April.
- Matthieu Dubarry & David Beck, 2021. "Analysis of Synthetic Voltage vs. Capacity Datasets for Big Data Li-ion Diagnosis and Prognosis," Energies, MDPI, vol. 14(9), pages 1-24, April.
- Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Hamed Sadegh Kouhestani & Xiaoping Yi & Guoqing Qi & Xunliang Liu & Ruimin Wang & Yang Gao & Xiao Yu & Lin Liu, 2022. "Prognosis and Health Management (PHM) of Solid-State Batteries: Perspectives, Challenges, and Opportunities," Energies, MDPI, vol. 15(18), pages 1-26, September.
- Irene Niyonambaza & Marco Zennaro & Alfred Uwitonze, 2020. "Predictive Maintenance (PdM) Structure Using Internet of Things (IoT) for Mechanical Equipment Used into Hospitals in Rwanda," Future Internet, MDPI, vol. 12(12), pages 1-23, December.
- Tanvir Alam Shifat & Rubiya Yasmin & Jang-Wook Hur, 2021. "A Data Driven RUL Estimation Framework of Electric Motor Using Deep Electrical Feature Learning from Current Harmonics and Apparent Power," Energies, MDPI, vol. 14(11), pages 1-21, May.
- Yong Zhu & Mingyi Liu & Lin Wang & Jianxing Wang, 2022. "Potential Failure Prediction of Lithium-ion Battery Energy Storage System by Isolation Density Method," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-981-13-0090-5_13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.