IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-319-63423-4_4.html
   My bibliography  Save this book chapter

Modeling and Inference for Multi-state Systems

In: Recent Advances in Multi-state Systems Reliability

Author

Listed:
  • Vlad Stefan Barbu

    (Université de Rouen)

  • Alex Karagrigoriou

    (University of the Aegean)

Abstract

In this work we are focused on multi-state systems modeled by means of a special type of semi-Markov processes. The sojourn times are seen to be independent not necessarily identically distributed random variables and assumed to belong to a general class of distributions closed under extrema that includes, in addition to some discrete distributions, several typical reliability distributions like the exponential, Weibull, and Pareto. A special parametrization is proposed for the parameters describing the system, taking thus into account various types of dependencies of the parameters on the the states of the system. We obtain maximum likelihood estimators of the parameters and plug-in type estimators are furnished for the basic quantities describing the semi-Markov system under study.

Suggested Citation

  • Vlad Stefan Barbu & Alex Karagrigoriou, 2018. "Modeling and Inference for Multi-state Systems," Springer Series in Reliability Engineering, in: Anatoly Lisnianski & Ilia Frenkel & Alex Karagrigoriou (ed.), Recent Advances in Multi-state Systems Reliability, pages 59-70, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-319-63423-4_4
    DOI: 10.1007/978-3-319-63423-4_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guglielmo D’Amico & Giovanni Villani, 2021. "Valuation of R&D compound option using Markov chain approach," Annals of Finance, Springer, vol. 17(3), pages 379-404, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-319-63423-4_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.