IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-662-63364-9_11.html
   My bibliography  Save this book chapter

Hierarchisch bayesianische Methoden bei der Conjointanalyse

In: Conjointanalyse

Author

Listed:
  • Bernhard Baumgartner

    (Universität Osnabrück)

  • Winfried J. Steiner

    (Technische Universität Clausthal)

Abstract

Zusammenfassung Im Laufe der letzten beiden Dekaden wurden in der Marketingforschung zunehmend hierarchisch bayesianische Ansätze zur Modellierung von Konsumentenheterogenität eingesetzt. Allenby et al. (1995), Allenby und Ginter (1995) sowie Lenk et al. (1996) wendeten diese Verfahren erstmals an, um individuelle Nutzenbeiträge basierend auf Daten aus Conjointanalysen zu schätzen. In diesem Kapitel werden Grundlagen und die Vorgehensweise einführend diskutiert. So wird zunächst der Grundgedanke der bayesianischen Statistik und das häufig verwendete, so genannte „Normalmodell“ zur Schätzung individueller Koeffizienten sowie Modellerweiterungen behandelt. Ausführungen zur Modellselektion und eine empirische Anwendung schließen das Kapitel mit einer kurzen Zusammenfassung ab.

Suggested Citation

  • Bernhard Baumgartner & Winfried J. Steiner, 2021. "Hierarchisch bayesianische Methoden bei der Conjointanalyse," Springer Books, in: Daniel Baier & Michael Brusch (ed.), Conjointanalyse, edition 2, chapter 0, pages 257-272, Springer.
  • Handle: RePEc:spr:sprchp:978-3-662-63364-9_11
    DOI: 10.1007/978-3-662-63364-9_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-662-63364-9_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.