IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-39869-8_2.html
   My bibliography  Save this book chapter

Sales Forecasting in Apparel and Fashion Industry: A Review

In: Intelligent Fashion Forecasting Systems: Models and Applications

Author

Listed:
  • Sébastien Thomassey

    (University Lille Nord of France)

Abstract

The fashion industry is a very fascinating sector for the sales forecasting. Indeed, the long time-to-market which contrasts with the short life cycle of products, makes the forecasting process very challenging. A suitable forecasting system should also deal with the specificities of the demand: fashion trends, seasonality, influence of many exogenous factors, …. We propose here a review of the different constraints related to the sales forecasting in the fashion industry, the methodologies and techniques existing in the literature to cope with these constraints and finally, the new topics which could be explored in the field of the sales forecasting for fashion products.

Suggested Citation

  • Sébastien Thomassey, 2014. "Sales Forecasting in Apparel and Fashion Industry: A Review," Springer Books, in: Tsan-Ming Choi & Chi-Leung Hui & Yong Yu (ed.), Intelligent Fashion Forecasting Systems: Models and Applications, edition 127, chapter 0, pages 9-27, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-39869-8_2
    DOI: 10.1007/978-3-642-39869-8_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Battista Gardino & Rosa Meo & Giuseppe Craparotta, 0. "Multi-view Latent Learning Applied to Fashion Industry," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
    2. Shuyun Ren & Hau-Ling Chan & Pratibha Ram, 2017. "A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty," Annals of Operations Research, Springer, vol. 257(1), pages 335-355, October.
    3. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    4. Belvedere, Valeria & Goodwin, Paul, 2017. "The influence of product involvement and emotion on short-term product demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 652-661.
    5. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    6. Giovanni Battista Gardino & Rosa Meo & Giuseppe Craparotta, 2021. "Multi-view Latent Learning Applied to Fashion Industry," Information Systems Frontiers, Springer, vol. 23(1), pages 53-69, February.
    7. Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
    8. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-39869-8_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.