IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-57413-4_24.html
   My bibliography  Save this book chapter

Bayesian Models

In: Handbook of Market Research

Author

Listed:
  • Thomas Otter

    (Goethe University Frankfurt am Main)

Abstract

Bayesian models have become a mainstay in the tool set for marketing research in academia and industry practice. In this chapter, I discuss the advantages the Bayesian approach offers to researchers in marketing, the essential building blocks of a Bayesian model, Bayesian model comparison, and useful algorithmic approaches to fully Bayesian estimation. I show how to achieve feasible Bayesian inference to support marketing decisions under uncertainty using the Gibbs sampler, the Metropolis Hastings algorithm, and point to more recent developments – specifically the no-U-turn implementation of Hamiltonian Monte Carlo sampling available in Stan. The emphasis is on the development of an appreciation of Bayesian inference techniques supported by references to implementations in the open source software R, and not on the discussion of individual models. The goal is to encourage researchers to formulate new, more complete, and useful prior structures that can be updated with data for better marketing decision support.

Suggested Citation

  • Thomas Otter, 2022. "Bayesian Models," Springer Books, in: Christian Homburg & Martin Klarmann & Arnd Vomberg (ed.), Handbook of Market Research, pages 719-780, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-57413-4_24
    DOI: 10.1007/978-3-319-57413-4_24
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-57413-4_24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.