IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-57413-4_18.html
   My bibliography  Save this book chapter

Multilevel Modeling

In: Handbook of Market Research

Author

Listed:
  • Till Haumann

    (South Westphalia University of Applied Sciences)

  • Roland Kassemeier

    (University of Warwick)

  • Jan Wieseke

    (University of Bochum)

Abstract

Many phenomena in marketing involve multiple levels of theory and analysis. Adopting a multilevel lens to marketing phenomena can often yield richer and more rigorous results. However, the consideration of multiple levels of theory and analysis often leads to the challenge to cope with nested data structures in which a lower level unit of analysis is nested within a higher level unit of analysis. Explicitly acknowledging such nested data structures is important as its analysis with single level analysis techniques may result in biased results and thus incorrect conclusions because nested data structures often violate assumptions of conventional single level analysis techniques. A methodological approach which explicitly accounts for multiple levels of analysis and thus the nested structure of data is referred to as multilevel modeling. This chapter attempts to help researchers and practitioners interested in investigating multilevel phenomena by providing an introduction to multilevel modeling. It therefore describes the theoretic fundamentals of multilevel modeling by outlining the conceptual and statistical relevance of multilevel modeling. Furthermore, it provides guidance how to build a multilevel regression model using a step-by-step approach. The chapter also discusses how to assess the fit of multilevel models, how to center variables at different levels of analysis, and how to determine the sample sizes to adequately estimate multilevel models. Moreover, it offers insights how the logic of multilevel regression analysis could be expanded to multilevel structural equation modeling, discusses different statistical software packages that can be employed to estimate multilevel models, and provides a detailed example of building and estimating a multilevel model.

Suggested Citation

  • Till Haumann & Roland Kassemeier & Jan Wieseke, 2022. "Multilevel Modeling," Springer Books, in: Christian Homburg & Martin Klarmann & Arnd Vomberg (ed.), Handbook of Market Research, pages 369-409, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-57413-4_18
    DOI: 10.1007/978-3-319-57413-4_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-57413-4_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.