IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-57413-4_10.html
   My bibliography  Save this book chapter

Modeling Marketing Dynamics Using Vector Autoregressive (VAR) Models

In: Handbook of Market Research

Author

Listed:
  • Shuba Srinivasan

    (Boston University Questrom School of Business)

Abstract

Time-series data include repeated measures of marketing activities and performance that are typically equally spaced in time. In the context of such data, Vector Autoregressive (VAR) models are uniquely suited to capture the time dependence of both a criterion variable (e.g., sales performance) and predictor variables (e.g., marketing actions, online consumer behavior metrics), as well as how they relate to each other over time. The objective of this chapter is to provide a foundation in VAR models and to enable the readers to apply them in their own research domain of interest. To this end, the chapter will discuss both the underlying perspectives and differences among alternative VAR models, and the practical issues with testing, model choice, estimation, and interpretation that are common in empirical research in marketing. From a marketing strategy perspective, both managers and academic researchers pay attention to whether a performance change is temporary (short-term) or lasting (long-term). Establishing the distinction between short-term and long-term marketing effectiveness is central to the understanding of marketing strategy and its implications, which this chapter aims to do. The interaction among appropriate marketing phenomena, modeling philosophy, and contemporary substantive topics sets this work apart from previous treatments on the broader topic of econometrics and time-series analysis in marketing (e.g., Dekimpe and Hanssens, Persistence modeling for assessing marketing strategy performance. In: Lehmann D, Moorman C (eds) Cool tools in marketing strategy research. Marketing Science Institute, Cambridge, MA, 2004; Hanssens et al., Market response models: Econometric and time series analysis. Springer Science and Business Media, 2001; Pauwels, Found Trends Market 11(4):215–301, 2018).

Suggested Citation

  • Shuba Srinivasan, 2022. "Modeling Marketing Dynamics Using Vector Autoregressive (VAR) Models," Springer Books, in: Christian Homburg & Martin Klarmann & Arnd Vomberg (ed.), Handbook of Market Research, pages 515-547, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-57413-4_10
    DOI: 10.1007/978-3-319-57413-4_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-57413-4_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.