IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4614-6756-4_4.html
   My bibliography  Save this book chapter

Stochastic Differential Inclusions

In: Stochastic Differential Inclusions and Applications

Author

Listed:
  • Michał Kisielewicz

    (University of Zielona Góra)

Abstract

This chapter is devoted to the theory of stochastic differential inclusions. The main results deal with stochastic functional inclusions defined by set-valued functional stochastic integrals. Subsequent sections discuss properties of stochastic and backward stochastic differential inclusions.

Suggested Citation

  • Michał Kisielewicz, 2013. "Stochastic Differential Inclusions," Springer Optimization and Its Applications, in: Stochastic Differential Inclusions and Applications, edition 127, chapter 0, pages 147-179, Springer.
  • Handle: RePEc:spr:spochp:978-1-4614-6756-4_4
    DOI: 10.1007/978-1-4614-6756-4_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel de Carvalho & Gabriel Martos, 2022. "Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 167-180, January.
    2. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    3. Weixuan Xia, 2023. "Set-valued stochastic integrals for convoluted L\'{e}vy processes," Papers 2312.01730, arXiv.org, revised Nov 2024.
    4. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    5. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    6. Jessada Tariboon & Sotiris K. Ntouyas & Bashir Ahmad & Ahmed Alsaedi, 2020. "Existence Results for Sequential Riemann–Liouville and Caputo Fractional Differential Inclusions with Generalized Fractional Integral Conditions," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    7. Bashir Ahmad & Ahmed Alsaedi & Sotiris K. Ntouyas & Hamed H. Al-Sulami, 2019. "On Neutral Functional Differential Inclusions involving Hadamard Fractional Derivatives," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    8. Ahmed Alsaedi & Ravi P. Agarwal & Sotiris K. Ntouyas & Bashir Ahmad, 2020. "Fractional-Order Integro-Differential Multivalued Problems with Fixed and Nonlocal Anti-Periodic Boundary Conditions," Mathematics, MDPI, vol. 8(10), pages 1-16, October.
    9. Mariusz Michta & Jerzy Motyl, 2022. "Set-Valued Functions of Bounded Generalized Variation and Set-Valued Young Integrals," Journal of Theoretical Probability, Springer, vol. 35(1), pages 528-549, March.
    10. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.
    11. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2021. "A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1003-1026.
    12. Sotiris K. Ntouyas & Bashir Ahmad & Jessada Tariboon, 2022. "( k , ψ )-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions," Mathematics, MDPI, vol. 10(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4614-6756-4_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.