IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i1d10.1007_s10959-020-01059-0.html
   My bibliography  Save this article

Set-Valued Functions of Bounded Generalized Variation and Set-Valued Young Integrals

Author

Listed:
  • Mariusz Michta

    (University of Zielona Góra)

  • Jerzy Motyl

    (University of Zielona Góra)

Abstract

The paper deals with some properties of set-valued functions having bounded Riesz p-variation. Set-valued integrals of Young type for such multifunctions are introduced. Selection results and properties of such set-valued integrals are discussed. These integrals contain as a particular case set-valued stochastic integrals with respect to a fractional Brownian motion, and therefore, their properties are crucial for the investigation of solutions to stochastic differential inclusions driven by a fractional Brownian motion.

Suggested Citation

  • Mariusz Michta & Jerzy Motyl, 2022. "Set-Valued Functions of Bounded Generalized Variation and Set-Valued Young Integrals," Journal of Theoretical Probability, Springer, vol. 35(1), pages 528-549, March.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:1:d:10.1007_s10959-020-01059-0
    DOI: 10.1007/s10959-020-01059-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-01059-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-01059-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michał Kisielewicz, 2013. "Stochastic Differential Inclusions," Springer Optimization and Its Applications, in: Stochastic Differential Inclusions and Applications, edition 127, chapter 0, pages 147-179, Springer.
    2. Hiai, Fumio & Umegaki, Hisaharu, 1977. "Integrals, conditional expectations, and martingales of multivalued functions," Journal of Multivariate Analysis, Elsevier, vol. 7(1), pages 149-182, March.
    3. Michał Kisielewicz, 2013. "Stochastic Differential Inclusions and Applications," Springer Optimization and Its Applications, Springer, edition 127, number 978-1-4614-6756-4, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessada Tariboon & Sotiris K. Ntouyas & Bashir Ahmad & Ahmed Alsaedi, 2020. "Existence Results for Sequential Riemann–Liouville and Caputo Fractional Differential Inclusions with Generalized Fractional Integral Conditions," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    2. Ahmed Alsaedi & Ravi P. Agarwal & Sotiris K. Ntouyas & Bashir Ahmad, 2020. "Fractional-Order Integro-Differential Multivalued Problems with Fixed and Nonlocal Anti-Periodic Boundary Conditions," Mathematics, MDPI, vol. 8(10), pages 1-16, October.
    3. Sotiris K. Ntouyas & Bashir Ahmad & Jessada Tariboon, 2022. "( k , ψ )-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
    4. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    5. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.
    6. Miguel de Carvalho & Gabriel Martos, 2022. "Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 167-180, January.
    7. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    8. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    9. Bashir Ahmad & Ahmed Alsaedi & Sotiris K. Ntouyas & Hamed H. Al-Sulami, 2019. "On Neutral Functional Differential Inclusions involving Hadamard Fractional Derivatives," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    10. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2021. "A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1003-1026.
    11. Weixuan Xia, 2023. "Set-valued stochastic integrals for convoluted L\'{e}vy processes," Papers 2312.01730, arXiv.org, revised Aug 2024.
    12. Wang, Rongming & Wang, Zhenpeng, 1997. "Set-Valued Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 180-198, October.
    13. Ezzaki, Fatima & Tahri, Khalid, 2019. "Representation theorem of set valued regular martingale: Application to the convergence of set valued martingale," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    14. Reza Ezzati & Shokrollah Ziari, 2012. "Approximation of fuzzy integrals using fuzzy bernstein polynomials," Fuzzy Information and Engineering, Springer, vol. 4(4), pages 415-423, December.
    15. Tito Homem-de-Mello, 2001. "Estimation of Derivatives of Nonsmooth Performance Measures in Regenerative Systems," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 741-768, November.
    16. López-Díaz, Miguel, 2006. "An indexed multivariate dispersion ordering based on the Hausdorff distance," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1623-1637, August.
    17. Jang, Lee-Chae & Kwon, Joong-Sung, 1998. "A uniform strong law of large numbers for partial sum processes of Banach space-valued random sets," Statistics & Probability Letters, Elsevier, vol. 38(1), pages 21-25, May.
    18. Kosaku Takanashi, 2017. "Local Asymptotic Normality of Infinite-Dimensional Concave Extended Linear Models," Keio-IES Discussion Paper Series 2017-012, Institute for Economics Studies, Keio University.
    19. Fabián Flores-Bazán & Luis González-Valencia, 2021. "Characterizing Existence of Minimizers and Optimality to Nonconvex Quadratic Integrals," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 497-522, February.
    20. Bhowmik, Anuj, 2013. "Edgeworth equilibria: separable and non-separable commodity spaces," MPRA Paper 46796, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:1:d:10.1007_s10959-020-01059-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.