IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-37110-4_1.html
   My bibliography  Save this book chapter

Topological Analysis of Bitcoin’s Lightning Network

In: Mathematical Research for Blockchain Economy

Author

Listed:
  • István András Seres

    (Eötvös Loránd University)

  • László Gulyás

    (Eötvös Loránd University)

  • Dániel A. Nagy

    (Eötvös Loránd University)

  • Péter Burcsi

    (Eötvös Loránd University)

Abstract

Bitcoin’s Lightning Network (LN) is a scalability solution for Bitcoin allowing transactions to be issued with negligible fees and settled instantly at scale. In order to use LN, funds need to be locked in payment channels on the Bitcoin blockchain (Layer-1) for subsequent use in LN (Layer-2). LN is comprised of many payment channels forming a payment channel network. LN’s promise is that relatively few payment channels already enable anyone to efficiently, securely and privately route payments across the whole network. In this paper, we quantify the structural properties of LN and argue that LN’s current topological properties can be ameliorated in order to improve the security of LN, enabling it to reach its true potential.

Suggested Citation

  • István András Seres & László Gulyás & Dániel A. Nagy & Péter Burcsi, 2020. "Topological Analysis of Bitcoin’s Lightning Network," Springer Proceedings in Business and Economics, in: Panos Pardalos & Ilias Kotsireas & Yike Guo & William Knottenbelt (ed.), Mathematical Research for Blockchain Economy, pages 1-12, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-37110-4_1
    DOI: 10.1007/978-3-030-37110-4_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zabka, Philipp & Förster, Klaus-T. & Decker, Christian & Schmid, Stefan, 2024. "A centrality analysis of the Lightning Network," Telecommunications Policy, Elsevier, vol. 48(2).
    2. Qiang Liu & Baoyan Song & Junlu Wang, 2022. "Second-degree branch structure blockchain expansion model," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501477211, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-37110-4_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.