IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-30967-1_13.html
   My bibliography  Save this book chapter

Crop Yield Prediction Using Deep Neural Networks

In: Smart Service Systems, Operations Management, and Analytics

Author

Listed:
  • Saeed Khaki

    (Iowa State University)

  • Lizhi Wang

    (Iowa State University)

Abstract

The world’s population is on the rise and in order to feed the world in 2050, food production will need to increase by 70% [1]. As a result, it is of great importance to construct powerful predictive models for phenotype prediction based on Genotype and Environment data (so-called G by E problem). The objective of the G by E analysis is to understand how genotype and the environment jointly determine the phenotype (such as crop yield and disease resistance) of plant or animal species. In this research, deep neural networksDeep neural networks are trained and used as predictive models. Deep neural networks have become a popular tool in supervise learning due to considerable ability in training nonlinear features [5]. Recent articles have stated that the network depth is a vital factor in decreasing classification or regression error. But, deeper networks have a so-called vanishing/exploding gradients problem which makes the training and optimizing deeper networks difficult. He et al. proposed residual learning method which alleviates this problem very well and showed that deep residual networks are significantly better and more efficient than previous typical networks [5]. As a result, residual training has been used in this research to prevent gradient degradation and ease the optimization process. Finally, since it is difficult to predict the yield difference directly, two separate residual neural networks have been trained to predict yield and check yield. After training the networks, the RMSE for check yield and yield are 8.23 and 10.52, respectively, which are very good because of considerable amount of missing values, uncertainty, and complexity in the datasets.

Suggested Citation

  • Saeed Khaki & Lizhi Wang, 2020. "Crop Yield Prediction Using Deep Neural Networks," Springer Proceedings in Business and Economics, in: Hui Yang & Robin Qiu & Weiwei Chen (ed.), Smart Service Systems, Operations Management, and Analytics, pages 139-147, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-30967-1_13
    DOI: 10.1007/978-3-030-30967-1_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Héctor García-Martínez & Héctor Flores-Magdaleno & Roberto Ascencio-Hernández & Abdul Khalil-Gardezi & Leonardo Tijerina-Chávez & Oscar R. Mancilla-Villa & Mario A. Vázquez-Peña, 2020. "Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network Using Multispectral and RGB Images Acquired with Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-30967-1_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.