IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-04726-9_27.html
   My bibliography  Save this book chapter

A Predictive Approach for Monitoring Services in the Internet of Things

In: Advances in Service Science

Author

Listed:
  • Shubhi Asthana

    (IBM Research)

  • Aly Megahed

    (IBM Research)

  • Mohamed Mohamed

    (IBM Research)

Abstract

In Internet of Things (IoT) environments, devices offer monitoring services that would allow tenants to collect real-time data of different metrics through sensors. Values of monitored metrics can go above (or below) certain predefined thresholds, triggering the need to monitor these metrics at a higher or lower frequency since there are limited monitoring resources on the IoT devices. Also, such triggers might require additional metrics to be included or excluded from the monitoring service. An example for this is in a healthcare application, where if the blood pressure increases beyond a certain threshold, it might be necessary to start monitoring the heart beat at a higher frequency. Similarly, the change of the environmental context might necessitate the need to change/update the monitored metrics. For instance, in a smart car application, if an accident is observed on the monitored route, another route might need to be monitored. Whenever a trigger happens, there are optimization-based methods in the literature that calculate the optimal set of metrics to keep/start measuring and their frequencies. However, running these methods takes a considerable amount of time, making the approach, of waiting until the trigger happens and executing the optimization models, impractical. In this paper, we propose a novel system that predicts the next trigger to happen, run the optimization-based methods beforehand, and thus have the results ready before the triggers happen. The prediction is built as a tree structure of the state of the system followed with its predicted child nodes/states, and the children states of these children… etc. Whenever part of that predicted tree actually occurs, one can remove the calculations of the part that did not occur to save storage resources.

Suggested Citation

  • Shubhi Asthana & Aly Megahed & Mohamed Mohamed, 2019. "A Predictive Approach for Monitoring Services in the Internet of Things," Springer Proceedings in Business and Economics, in: Hui Yang & Robin Qiu (ed.), Advances in Service Science, pages 271-276, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-04726-9_27
    DOI: 10.1007/978-3-030-04726-9_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-04726-9_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.