IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-04726-9_19.html
   My bibliography  Save this book chapter

Predicting Call Center Performance with Machine Learning

In: Advances in Service Science

Author

Listed:
  • Siqiao Li

    (Vrije Universiteit Amsterdam)

  • Qingchen Wang

    (Vrije Universiteit Amsterdam
    Amsterdam Business School)

  • Ger Koole

    (Vrije Universiteit Amsterdam)

Abstract

In this paper we present a simulation-based machine learning framework to evaluate the performance of call centers having heterogeneous sets of servers and multiple types of demand. We first develop a simulation model for a call center with multi-skill agents and multi-class customers to sample quality of service (QoS) outcomes as measured by service level (SL). We then train a machine learning algorithm on a small number of simulation samples to quickly produce a look-up table of QoS for all candidate schedules. The machine learning algorithm is agnostic to the simulation and only uses information from the staff schedules. This allows our method to generalize across different real-life conditions and scenarios. Through two numerical examples using real-life call center scenarios we show that our method works surprisingly well, with out-of-sample fit (R-squared) of over 0.95 when comparing the machine learning prediction of SL to that of the ground truth from the simulation.

Suggested Citation

  • Siqiao Li & Qingchen Wang & Ger Koole, 2019. "Predicting Call Center Performance with Machine Learning," Springer Proceedings in Business and Economics, in: Hui Yang & Robin Qiu (ed.), Advances in Service Science, pages 193-199, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-04726-9_19
    DOI: 10.1007/978-3-030-04726-9_19
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-04726-9_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.