IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-319-42902-1_63.html
   My bibliography  Save this book chapter

Automatic Root Cause Analysis by Integrating Heterogeneous Data Sources

In: Operations Research Proceedings 2015

Author

Listed:
  • Felix Richter

    (Volkswagen AG)

  • Tetiana Aymelek

    (Volkswagen AG)

  • Dirk C. Mattfeld

    (Institute on Business Information Systems)

Abstract

This paper proposes a concept for automated root cause analysis, which integrates heterogeneous data sources and works in near real-time, in order to overcome the time-delay between failure occurrence and diagnosis. Such sources are (a) vehicle data, transmitted online to a backend and (b) customer service data comprising all historical diagnosed failures of a vehicle fleet and the performed repair actions. This approach focusses on the harmonization of the different granularity of the data sources, by abstracting them in a unified representation. The vehicle behavior is recorded by raw signal aggregations. These aggregations are representing the vehicle behavior in a respective time period. At discrete moments in time these aggregations are transmitted to a backend in order to build a history of the vehicle behavior. Each workshop session is used to link the historic vehicle behavior to the customer service data. The result is a root cause database. An automatic root cause analysis can be carried out by comparing the data collected for an ego-vehicle, the vehicle the failure situation occurred, with the root cause database. On the other hand, the customer service data can be analyzed by an occurred failure code and filtered by comparing the vehicle behavior. The most valid root cause is detected by weighting the patterns described above.

Suggested Citation

  • Felix Richter & Tetiana Aymelek & Dirk C. Mattfeld, 2017. "Automatic Root Cause Analysis by Integrating Heterogeneous Data Sources," Operations Research Proceedings, in: Karl Franz Dörner & Ivana Ljubic & Georg Pflug & Gernot Tragler (ed.), Operations Research Proceedings 2015, pages 469-474, Springer.
  • Handle: RePEc:spr:oprchp:978-3-319-42902-1_63
    DOI: 10.1007/978-3-319-42902-1_63
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Oliveira & Vera L. Miguéis & José L. Borges, 2023. "Automatic root cause analysis in manufacturing: an overview & conceptualization," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2061-2078, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-319-42902-1_63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.