IDEAS home Printed from https://ideas.repec.org/h/spr/nrmchp/978-1-4419-0369-3_6.html
   My bibliography  Save this book chapter

Biofuels and Agricultural Growth: Challenges for Developing Agricultural Economies and Opportunities for Investment

In: Handbook of Bioenergy Economics and Policy

Author

Listed:
  • Siwa Msangi

    (International Food Policy Research Institute)

  • Mandy Ewing

    (International Food Policy Research Institute)

  • Mark Rosegrant

    (International Food Policy Research Institute)

Abstract

Global projections for increasing food demand combined with increasing demand for energy from all sources – including crop-based biofuels – point toward greater stress on food systems and their supporting ecosystems. In many parts of the world, increasing household incomes has translated into increasing demands for energy, of which transportation fuel comprises a fast-growing share. Accompanying the world’s steady population growth is an increasing demand for food and the necessary feedstuffs to fuel the requisite increases in livestock production. The combination of these two trends will inevitably lead to greater stresses and demands on the natural resource base and eco-systems that underlie the world’s food and energy production systems – such as land and water. In this chapter, we examine the increasing demands on agricultural production systems, within the context of both biofuels and demographically driven demand for food and feed products, and the implied stresses that these drivers represent. By looking at the implied crop productivity improvements that are necessary to maintain adequate supplies of food and feed for a growing global population, we are able to infer the magnitude of investments in agricultural research, among other policy interventions (such as irrigation investments), that are needed to avoid worsening food security outcomes in the face of growing biofuel demands. From our analysis, clear policy implications will be drawn as to how to best avoid the deterioration in human well-being, and recommendations for strengthening food systems and their ability to deliver needed services will also be made. By illustrating the policy problem in this way, we hope to better clarify the key issues that connect biofuels growth to agricultural growth, human welfare, and policy-focused interventions and investments.

Suggested Citation

  • Siwa Msangi & Mandy Ewing & Mark Rosegrant, 2010. "Biofuels and Agricultural Growth: Challenges for Developing Agricultural Economies and Opportunities for Investment," Natural Resource Management and Policy, in: Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy, chapter 0, pages 73-90, Springer.
  • Handle: RePEc:spr:nrmchp:978-1-4419-0369-3_6
    DOI: 10.1007/978-1-4419-0369-3_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uris Lantz C. Baldos & Thomas W. Hertel, 2014. "Global food security in 2050: the role of agricultural productivity and climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 554-570, October.
    2. Baldos, Uris Lantz & Thomas Hertel, 2014. "Bursting the Bubble: A Long Run Perspective on Crop Commodity Prices," GTAP Working Papers 4574, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    3. Marvuglia, Antonino & Benetto, Enrico & Rege, Sameer & Jury, Colin, 2013. "Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: Critical review and proposed framework for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 768-781.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nrmchp:978-1-4419-0369-3_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.