IDEAS home Printed from https://ideas.repec.org/h/spr/mgmchp/978-3-031-52542-1_3.html
   My bibliography  Save this book chapter

Credit Modeling Techniques

In: Practical Credit Risk and Capital Modeling, and Validation

Author

Listed:
  • Colin Chen

    (Data Science and Analytics Consultants)

Abstract

Credit risk modeling techniques become mature over more than a half century of developments. While modeling for credit risk could be traced back much earlier, theoretical affirmation of statistical models, for example, the multinomial logit model as a special case of the more general conditional logit model, was first provided about a half century ago (McFadden, 1974) using the random utility maximization paradigm. Since then, statistical models like the generalized linear models (GLM) have become the most popular selection in modeling credit risks, though machine learning models start to challenge that dominance in some areas in recent years. Figure 3.1 outlines the structure of various models discussed in this chapter.

Suggested Citation

  • Colin Chen, 2024. "Credit Modeling Techniques," Management for Professionals, in: Practical Credit Risk and Capital Modeling, and Validation, chapter 3, pages 77-149, Springer.
  • Handle: RePEc:spr:mgmchp:978-3-031-52542-1_3
    DOI: 10.1007/978-3-031-52542-1_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mgmchp:978-3-031-52542-1_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.