IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-540-37007-9_1.html
   My bibliography  Save this book chapter

Combined Relaxation Methods for Generalized Monotone Variational Inequalities

In: Generalized Convexity and Related Topics

Author

Listed:
  • Igor V. Konnov

    (Kazan University)

Abstract

Summary The paper is devoted to the combined relaxation approach to constructing solution methods for variational inequalities. We describe the basic idea of this approach and implementable methods both for single-valued and for multi-valued problems. All the combined relaxation methods are convergent under very mild assumptions. This is the case if there exists a solution to the dual formulation of the variational inequality problem. In general, these methods attain a linear rate of convergence. Several classes of applications are also described.

Suggested Citation

  • Igor V. Konnov, 2007. "Combined Relaxation Methods for Generalized Monotone Variational Inequalities," Lecture Notes in Economics and Mathematical Systems, in: Generalized Convexity and Related Topics, pages 3-31, Springer.
  • Handle: RePEc:spr:lnechp:978-3-540-37007-9_1
    DOI: 10.1007/978-3-540-37007-9_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. V. Konnov, 2014. "Right-Hand Side Decomposition for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 221-238, January.
    2. Tran Quoc & Le Muu, 2012. "Iterative methods for solving monotone equilibrium problems via dual gap functions," Computational Optimization and Applications, Springer, vol. 51(2), pages 709-728, March.
    3. I. V. Konnov, 2015. "Regularized Penalty Method for General Equilibrium Problems in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 500-513, February.
    4. Tran Quoc & Pham Anh & Le Muu, 2012. "Dual extragradient algorithms extended to equilibrium problems," Journal of Global Optimization, Springer, vol. 52(1), pages 139-159, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-540-37007-9_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.