IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-11891-8_2.html
   My bibliography  Save this book chapter

Container Terminal Operation: Current Trends and Future Challenges

In: Handbook of Ocean Container Transport Logistics

Author

Listed:
  • Kap Hwan Kim

    (Pusan National University)

  • Hoon Lee

    (Total Soft Bank Ltd.)

Abstract

This study reviews various planning and control activities in container terminals. Decision-making problems for operation planning and control are defined and new trends in the technological development for each decision-making process are discussed. Relevant research directions and open questions are proposed. The functions of the Terminal Operating System (TOS), which is the software used to implement the decision-making processes, are discussed and commercial TOSs are introduced and compared.

Suggested Citation

  • Kap Hwan Kim & Hoon Lee, 2015. "Container Terminal Operation: Current Trends and Future Challenges," International Series in Operations Research & Management Science, in: Chung-Yee Lee & Qiang Meng (ed.), Handbook of Ocean Container Transport Logistics, edition 127, chapter 2, pages 43-73, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-11891-8_2
    DOI: 10.1007/978-3-319-11891-8_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Ying & Song, Dong-Ping, 2018. "Optimal planning for container prestaging, discharging, and loading processes at seaport rail terminals with uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 88-109.
    2. Iris, Çağatay & Christensen, Jonas & Pacino, Dario & Ropke, Stefan, 2018. "Flexible ship loading problem with transfer vehicle assignment and scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 113-134.
    3. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    4. Kang, Liujiang & Meng, Qiang & Tan, Kok Choon, 2020. "Tugboat scheduling under ship arrival and tugging process time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    5. Shuai Jia & Chung-Lun Li & Zhou Xu, 2019. "Managing Navigation Channel Traffic and Anchorage Area Utilization of a Container Port," Transportation Science, INFORMS, vol. 53(3), pages 728-745, May.
    6. Lucija Bukvić & Jasmina Pašagić Škrinjar & Borna Abramović & Vladislav Zitrický, 2021. "Route Selection Decision-Making in an Intermodal Transport Network Using Game Theory," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    7. Wang, Fan & Xiong, Minghua & Niu, Baozhuang & Zhuo, Xiaopo, 2018. "Impact of government subsidy on BOT contract design: Price, demand, and concession period," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 137-159.
    8. Wang, Ning & Jin, Bo & Zhang, Zizhen & Lim, Andrew, 2017. "A feasibility-based heuristic for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 256(1), pages 90-101.
    9. Park, Jaehun & Lee, Byung Kwon, 2020. "Liner-dedicated manageability estimation for port operational reliability," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    10. Kastner, Marvin & Peters, Malte & Jahn, Carlos, 2021. "Assessing performance of container slot allocation heuristics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 427-454, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    11. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    12. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    13. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    14. Miguel Hervás-Peralta & Sara Poveda-Reyes & Gemma Dolores Molero & Francisco Enrique Santarremigia & Juan-Pascual Pastor-Ferrando, 2019. "Improving the Performance of Dry and Maritime Ports by Increasing Knowledge about the Most Relevant Functionalities of the Terminal Operating System (TOS)," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
    15. Xiao, Tingting & Ha, Albert Y., 2018. "Optimal unloading and storage pricing for inbound containers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 210-228.
    16. Xing, Xinjie & Song, Dongping & Qiu, Chengfeng & Drake, Paul R. & Zhan, Yuanzhu, 2023. "Joint tank container demurrage policy and flow optimisation using a progressive hedging algorithm with expanded time-space network," European Journal of Operational Research, Elsevier, vol. 307(2), pages 663-679.
    17. Geoffrey C. Preston & Phillip Horne & Maria Paola Scaparra & Jesse R. O’Hanley, 2020. "Masterplanning at the Port of Dover: The Use of Discrete-Event Simulation in Managing Road Traffic," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    18. Raka Jovanovic & Shunji Tanaka & Tatsushi Nishi & Stefan Voß, 2019. "A GRASP approach for solving the Blocks Relocation Problem with Stowage Plan," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 702-729, September.
    19. Li, Shuqin & Jia, Shuai, 2019. "The seaport traffic scheduling problem: Formulations and a column-row generation algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 158-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-11891-8_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.